Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ПРИМЕНЕНИЕ ИНФРАКРАСНОЙ ТЕХНИКИ Спектроскопия

    Для анализа многокомпонентных смесей используют хроматографы и масс-спектрометры. Кроме того, в последнее время получили применение анализаторы, принцип действия которых основан на сочетании различных методов анализа, например масс-спектроскопии и инфракрасной техники, хроматографии и масс-спектроскопии, хроматографии и инфракрасной техники. Такое сочетание различных методов обеспечивает высокую точность и гибкость анализа. Посредством спектрофотометров проводится либо качественный анализ (спектр анализируемого вещества сравнивается с эталонным), либо количественный (сравнивается интенсивность линий обоих спектров). [c.537]


    Исключительно важная проблема — обнаружение загрязнителей атмосферы и определение их концентрации. До недавних пор ИК-техника с этой целью почти не применялась. Содержание поллютантов, как правило, столь мало, что недоступно измерениям традиционными методами ИК-спектроскопии их поглощение явно недостаточно, если используются обычные ИК-кюветы, кроме того, поглощение атмосферной воды настолько велико, что практически забивает спектр поллютанта. Эти ограничения могут быть сняты применением фурье-спектроскопии. Агентство по защите окружающей среды США поставило задачу повысить чувствительность инфракрасного метода во-первых, поисками оптимальных кювет с большой длиной оптического пути, используемых вместе с фурье-спектрометрами во-вторых, искать способы минимизации помех из-за поглощения атмосферного водяного пара и, в-третьих, совершенствовать технику обогащения проб [37]. Для определения предельных обнаружимых концентраций поллютантов обратимся к известному соотношению (закон Бугера — Ламберта — Бера) ln o(v)//(v)=/i (v)Zp, где /o(v)—падающее излучение /(V)—излучение, прошедшее сквозь изучаемый слой газа с коэффициентом поглощения к( ) на частоте V при длине трассы I и парциальном давлении поглощающего газа р. Допустим, что надежно обнаружимым будет газ, дающий в спектре полосу поглощения с пиком, равным 10 % поглощения. Тогда 1п /о//=0,1. При известном коэффициенте поглощения и доступной длине трассы можно определить величину парциального давления поглощающего газа. Например, коэффициент / (v) в полосе поглощения 1050 см озона равен 10 атм 1 см- . Для того чтобы получить поглощение в 10% при использовании обычной лабораторной кюветы длиной 10 см, нужно иметь парциальное давление озона в ней 10 атм. Обычно давление озона-поллютанта составляет 10- атм, так что нужно повысить чувствительность системы обнаружения на 5 порядков. Для других поллютантов эта цифра может оказаться еще большей. [c.198]

    Монография предназначена для читателей, интересующихся применением инфракрасной спектроскопии при решении проблем, связанных с поверхностными явлениями. Используемая в исследованиях экспериментальная техника обсуждалась с учетом дальнейшего развития работ в этой области. Отмечены также экспериментальные ограничения метода. [c.7]

    Очевидно, что подробный анализ примеров, иллюстрирующих применение метода инфракрасной спектроскопии к хемосорбированным веществам, подчеркивает трудности интерпретации, отсутствие сведений первостепенной важности и необходимость улучшения экспериментальной техники. Однако эти трудности не говорят против применения метода инфракрасной спектроскопии адсорбированных веществ. Если эти трудности обнаруживаются, то скорее потому, что возможности, открываемые этими методами исследования химии поверхности, являются одновременно настолько очевидными и настолько заманчивыми, что служат источником большего количества вопросов, нежели любой другой метод. Очевидно, что через несколько лет инфракрасная спектроскопия станет основой всех методов изучения химии поверхности. [c.102]


    Прогресс, достигнутый в последнее время в области автоматики, радиоэлектроники и преобразования различных видов энергии, в большой мере обусловлен применением германия в полупроводниковой технике. Он используется для изготовления полупроводниковых элементов — диодов и триодов (транзисторов), заменяющих собой обычные вакуумные радиолампы и отличающихся от них малыми размерами, устойчивостью к вибрации, долговечностью и меньшим расходом электроэнергии. Эти полупроводниковые элементы изготавливаются десятками и сотнями миллионов штук в год [П. Германиевые выпрямители по сравнению с селеновыми имеют больший коэффициент полезного действия при меньших размерах вследствие этого они находят все большее применение. Есть силовые германиевые выпрямители, пропускающие ток в десятки тысяч ампер. Применяются германиевые датчики эффекта Холла и многие другие полупроводниковые устройства [2. В последнее время большое внимание уделяется устройствам с применением монокристаллических германиевых пленок. Из элементарного германия изготавливают линзы для приборов инфракрасной оптики (германий прозрачен для инфракрасных лучей), дозиметры ядерных частиц, анализаторы в рентгеновской спектроскопии. Германий с добавкой индия применяется для низкотемпературных термометров сопротивления, работающих при температуре жидкого гелия [2]. [c.349]

    Спектроскопия с Фурье-преобразованием, именуемая обычно Фурье-спектроскопией (ФС), является, по-видимому, одним из наиболее значительных и динамических новшеств, появившихся в области измерительной техники свое основное применение она нашла в инфракрасной спектроскопии и спектроскопии ядерного магнитного резонанса. В данной статье мы рассмотрим теорию и практику ФС, осветив некоторые аспекты прикладной математики, теории связи, понятий измерительной аппаратуры и лабораторной методики. [c.89]

    Возможность применения инфракрасной спектроскопии для количественного анализа смесей углеводородов обусловила быстрое совершенствование техники и распространение ее в годы второй мировой войны. Инфракрасная спектроскопия дает быстрые и точные методы анализа смесей углеводородов, важных для производства авиационного топлива, синтетического кауч ка и пластмасс, В дальнейшем разработанные методы использовались также для анализа бензинов (в сочетании с ректификацией), нашли применение при анализе аренов в процессах нефтепереработки и др. В настоящее время возможен анализ углеводородов С —Се и частично Сд для смссей алканов п алканов и цикланов Сг—Св и частично Сц—Се для алкенов Се—С для аренов. [c.498]

    ЗсЧ последило годы резко возросло применение инфракрасного излучения в физике, химии, биологии и технике. Инфракрасный спектральный анализ позволяет осуществлять количественное определонне состава химических смесей и проводить автоматизацию ряда химических технологических процессов. Важнейшее значение приобрели методы инфракрасной спектроскопии при изучении строения молекул, кристаллов, полимеров, биологических объектов, минералов, а также при изучении энергии химических связей, механизма химических реакций, процессов поглошепия излучения в твердых телах, особенпо в полу-проводииках. Астрономические исследования в инфракрасной области спектра позволяют установить химический состав и строение атмосферы, физические условия, существующие на планетах, в частности, распределение температуры на их поверхности. Инфракрасная аппаратура устанавливается на метеорологических спутниках и космических ракетах. Кроме того, открываются новые области применения инфракрасного излучения в связи с созданием квантово-механических генераторов, работающих в инфракрасном участке спектра. [c.5]

    В инфракрасной области спектра исследования проводятся обычно в интервале длин волн от 1 до 40 х. В области 1 (г уже начинают мещать обертоны основных колебаний, интенсивность которых составляет 10% от основных колебаний. Если такой обертон накладывается на основное колебание другой группы, то он мещает обнаружению этого колебания, особенно если полоса поглощения основного колебания не интенсивна. В спектрах комбинационного рассеяния обертоны чрезвычайно слабы (<1%), поэтому трудности такого рода отсутствуют. Кроме того, спектры комбинационного рассеяния могут давать частоты в интервале О—4000 сж , нижний предел (близкий к 0) ставится щирииой релеевской линии рассеяния. Таким образом легко доступны исследованию молекулы с колебаниями, лежащими ниже 250 СЖ . В инфракрасной области наблюдение таких колебаний надо вести в области длин волн больше 40 что затруднительно. Однако следует отметить, что современная инфракрасная техника уже освоила эту область и в отдельных случаях доходит до 50 и даже 1000 ji. Ранее считалось, что для аналитической инфракрасной спектроскопии вполне достаточная область 1 — 15 л (оптика из каменной соли), одиа-ко в настоящее время эта область расширена до 40—50 [д, путем применения оптики из кристаллов йодистого цезия. Исследования в еще более далекой инфракрасной области требуют применения специальных дифракционных решеток (эшелетт). [c.20]


    Введение. Ядерный магнитный резонанс (ЯМР) впервые наблюдали в 1946 г. Перселл [1] и Блох [2] в США и Роллин [31 в Англии. Возможности применения ЯМР в структурной орга нической химии были открыты только в 1953 г. [4], и с тех пор метод ЯМР стал развиваться исключительно быстро. Химиков-органиков, уже убедившихся в силе и гибкости методов инфракрасной спектроскопии, сразу привлекло открытие новой спектроскопической техники. Нельзя не отметить, что ЯМР, инфракрасная и ультрафиолетовая спектроскопии взаимно дополняют друг друга, так как каждый из этих методов дает информацию различного рода. Однако метод ЯМР часто дает такие результаты, которые практически невозможно было бы получить обычными химическими методами, и уже одного этого достаточно, чтобы объяснить рост его популярности. [c.62]

    Цезиевые фотоэлементы пригодны к эксплуатации в широком интервале спектра и отличаются большой чувствительностью. По сравнению с селеновыми они обладают рядом преимуществ и прежде всего отсутствием инерции. Цезиевые фотоэлементы и фотоумножители применяются в телевидении, радиолокации, звуковом киио, в приборах для автоматического контроля различных процессов, радиотехнике. Светочувствительность цезия предопределила еще одну область его применения— в люминесцентных трубках и экранах различного типа и назначения. Ряд соединений цезия используется в инфракрасной спектроскопии, в оптических приспособлениях для приборов ночного видения и др. Цезий имеет исключительно важное значение для развития современной электроники, оптики, радиохимии и других областей техники. Общий расход этого металла, однако, невелик и измеряется обычно несколькими сотнями килограммов в год, так как расход цезия иа изготовление одного фотоэлемента 0,1—0,01 г. [c.60]

    Инфракрасная спектроскопия компле1Й ных соединений представляет собой сравнительно молодую и быстро развивающуюся область исследования, сложившуюся фактически в течение последних десяти лет. Дальнейший прогресс ее будет связан, вероятно, с более широким внедрением расчетных методов, которые позволят исключить или хотя бы существенно ограничить произвол в отнесении колебательных частот. Можно ожидать также, что поле приложения инфракрасной спектроскопии к проблемам координационной химии значительно расширится с развитием экспериментальной техники (продвижение в область низких частот, где проявляются валентные и дёформаци онные колебания связей металл—лиганд, измерение интенсивностей, применение поляризованного излучения). [c.189]

    Сравнение метода ловушек (рис. XI. 3, а) с методами, в которых используют растворитель (рис. XI. 3, б) и газовые кюветы (рис. XI. 3, в), ясно показывает, что сочетание хроматографического разделения и препаративной техники инфракрасной спектроскопии повышает выход улавливания продуктов на 30—40% при лучшей воспроизводимости результатов измерений [17]. При применении для улавливания растворителей или газовых кювет достигается экономия как в продуктах разделения, так и во времени. [c.257]

    Молекулярная спектроскопия имеет в настоящее время широкое практическое применение и теоретическое значение. Молекулярный спектральный анализ используется в самых разиообразиых областях науки и техники. В результате интерпретации спектров можно выяснить конфигурацию молекул, распределение в них энергетических уровней, энергии связей между атомами, энергии диссоциации молекул и механизм химических реакций. Особое значение наряду с масс- и ПМР-спектроскоиией в современной органической химии имеют методы инфракрасной и ультрафиолетовой спектроскопии. [c.4]

    Чисто вращательные спектры газов, молекулы которых имеют постоянный дипольный момент, находятся, как известно, либо в микроволновой, либо в дальней инфракрасной области. Обычно такие спектры исследуют с помощью методов микроволновой спектроскопии, точность и разрешающая способность которых значительно превосходят возможности методов длинноволновой инфракрасной спектроскопии. Микроволновая спектроскопия используется для изучения таких явлений, как сверхтонкое расщепление и эффекты Штарка и Зеемана. С помощью таких исследований затем могут быть получены очень точные значения геометрических параметров. Техника измерений здесь в принципе проще, чем в оптическом диапазоне, поскольку вместо источника непрерывного спектра в микроволновой спектроскопии применяются высокомонохроматические клистроны с переменной частотой. Таким образом, отпадает необходимость в дифракционной решетке и удается избежать трудностей, связанных с применением системы монохроматоров ми кроволновые методы по существу следует отнести к электронным, а не к оптическим. Высокочастотная граница микроволновых измерений находится в настоящее время вблизи 20 см" (6-10 МГц). [c.16]

    Ферраро (1968) рассмотрел применение и перспективы длинноволновой инфракрасной спектроскопии в исследованиях неорганических соединений в обзоре содержатся полученные автором данные по применению техники высоких давлений. Подробная сводка инфракрасных спектров как неорганических, так и органических молекул дана в работе Бентли и сотр. (1968). Здесь рассмотрены применения метода к анализу соединений различных классов, обсуждаются корреляции и характеристические частоты в области 300—700 см . Этот обзор дополняет более раннюю работу Стюарта (1965), которая также посвящена возможностям анализа функциональных групп по характеристическим частотам. Исчерпывающий обзор работ, посвященных применению длинноволновой инфракрасной спектроскопии к решению химических проблем, вьшолнен Брашем и сотр. (1968). Результаты, опубликованные до 1960 г., можно найти в обзоре Палика (1960). [c.28]

    При помощи инфракрасной спектроскопии был исследован целый ряд проблем, связанных с природой адсорбционных процессов. Этот метод нащел весьма щирокое применение при изучении хемосорбции на металлах, нанесенных на подложку. Спектры физически адсорбированных молекул дали важные сведения о взаимодействии этих молекул с поверхностью адсорбента. Развитие техники эксперимента достигло той ступени, когда стало очевидным, что метод исследования инфракрасных спектров применим практически ко всем видам образцов, представляющих интерес для каталитиков. Метод исследования инфракрасных спектров не только пригоден для изучения хемо-сорбции и физической адсорбции он позволяет уточнить смысл этих терминов. [c.9]

    Вольшинство важнейших усовершенствований, сделанных недавно в технике инфракрасной спектроскопии, сосредоточивается вокруг конструирования быстрых приемников, скорость ответа которых на падающее инфракрасное излучение чаще всего менев-1 сек., а электронное усиление первоначально малого тока приводит к тому, что конечные показания могут даваться сравнительно грубыми приборами, как, например, самозаписывающими миллиамперметрами. Трудность усиления постоянного тока малого-, напряжения устраняется применением усилителей переменного тока с некоторыми приспособлениями, преобразующими первИЧт ный постоянный ток в переменный. По одному из методов ток-от термостолбика проходит через механический прерыватель,, и пульсирующее напряжение подается на входное сопротивление-усилителя через повышающий трансформатор. На выходе усилительного контура имеется выпрямитель, действующий синхронно с прерывателем на входе, и выпрямленный ток, получаемый ва . выходе, фиксируется при помощи записывающего миллиамперметра. Очень важно, что выпрямитель пропускает сигналы только тон частоты, которую дает прерыватель постоянного тока на входе  [c.126]

    Наиболее разработаны в методическом отношении способы обнаружения синглетного кислорода в газовой фазе. Наличие в системе Ю2 можно зарегистрировать методом эмиссионной спектроскопии. Важным преимуществом этого метода является то, что он позволяет обнаружить и Е -состояния синглетного молекулярного кислорода в широком диапазоне давления, тогда как методом ЭПР можно определить А -состояние синглетного кислорода при давлениях в несколько мм рт. ст. Потенциалы ионизации молекул Ю2 в состояниях А и ниже, чем для основного состояния На этом базируется фотоионизацион-ный метод обнаружения возбужденного кислорода. Широкое распространение имеет метод активации реакций путем замены НдО тяжелой водой. Эффект связан с тем, что время жизни в Б О значительно больше, чем в Н О, и поэтому активность синглетного кислорода в 02 также значительно выше. Современная техника люминесцентных измерений позволяет наблюдать и исследовать инфракрасную люминесценцию синглетного кислорода практически в любых растворителях в ходе фотосенсибилизированных или темновых процессов. Однако регистрация образования синглетного кислорода прямыми методами осложняется из-за низкой его стационарной концентрации вследствие взаимодействия Ю2 с различными акцепторами и тушителями. Поэтому широкое распространение получили методы обнаружения синглетного кислорода, основанные на применении акцепторов и тушителей, способных эффективно и более или менее избирательно взаимодействовать с синглетным кислородом, приводя к его физической дезактивации или образованию специфических продуктов окисления. В качестве акцепторов Ю2 применяются алкены, производные фурана, ароматические углеводороды, холестерин в качестве тушителей — каротиноиды, азиды, амиды, а-то-коферол. Возможно самотушение синглетного ( А ) кислорода [c.136]


Смотреть страницы где упоминается термин ПРИМЕНЕНИЕ ИНФРАКРАСНОЙ ТЕХНИКИ Спектроскопия: [c.39]    [c.247]    [c.271]    [c.6]   
Смотреть главы в:

Основы инфрокрасной техники -> ПРИМЕНЕНИЕ ИНФРАКРАСНОЙ ТЕХНИКИ Спектроскопия




ПОИСК





Смотрите так же термины и статьи:

Инфракрасная спектроскопи

Спектроскопия инфракрасная

ЭПР-спектроскопия применение



© 2025 chem21.info Реклама на сайте