Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ аренов фракции

    АНАЛИЗ АРЕНОВ ФРАКЦИИ н. к. -200 °С [c.141]

    Анализ аренов. Масс-спектрометрия позволяет определять очень большое число типов соединений в ароматической части фракций нефти, особенно высокомолекулярных. Поэтому чтобы не использовать матрицы калибровочных коэффициентов, имеющие слишком большой порядок, целесообразно применять разбиение матриц на блоки (см. с. 87). Матрица калибровочных коэффициентов состоит из трех блоков, соответствующих аренам с разным числом ароматических колец эти блоки обозначены Ai, А , А (табл. 22). [c.101]


    К настоящему времени разработано и используется несколько схем хроматографического анализа бензиновых фракций с различными пределами выкипания и разного происхождения. В нащей стране щироко используют схему и методику анализа прямогонной бензиновой фракции н. к.— 150 °С, разработанные Ал. А. Петровым с сотрудниками в середине 70-х годов. Эта фракция представляет собой очень сложную смесь, в нее входят алканы нормального и изостроения, циклоалканы и арены (гомологи бензола) — всего около 200 различных углеводородов. Для анализа из исходной нефти отбирают фракцию н. к. — 200 °С, затем с помощью жидкостной адсорбционной хроматографии на силикагеле (марки АСК) отделяют алкано-циклоалкановые углеводороды от аренов. Индивидуальный состав последних определяют методом газожидкостной хроматографии на капиллярной колонке. Алкано-циклоалкановую часть фракции на ректификационной колонке эффективностью 25— 50 теоретических тарелок разгоняют на фракции н. к.— 125 °С и 125—150 °С, которые затем раздельно анализируют на капиллярной колонке. Схема анализа приведена на рис. 4.1. [c.130]

    Фракция III — температура колонки 80°С для анализа насыщенной части и алкенов и 90 °С для анализа аренов давление на входе в колонку 0,21 МПа [c.143]

    Хроматографический анализ высококипящих фракций. Для анализа высококипящих фракций применяется жидкостная адсорбционная хроматография. В качестве сорбентов используются силикагель марки АКС, активный оксид алюминия и активный уголь. На силикагеле алкано-циклоалкановая часть хорошо отделяется от аренов, а последние — от смолистых веществ. [c.64]

    Исследованиями ряда авторов [65,66] с применением метода дифференциального термического анализа кинетики тепловыделений при гидрировании нефтяных фракций показано, что дпя большинства протекающих реакций характерно выделение теплоты при поглощении водорода. Так, реакции гидрогенолиза серусодержащих соединений протекают с вьщелением теплоты (34,9—96,7 кДж на 1 моль удаленной серы). Реакции гидрирования аренов протекают с вьщелением теплоты (58,6—67 кДж на [c.88]

    В результате анализа данных по индивидуальному составу бензинов советских и зарубежных нефтей авторы метода пришли к заключению, что распределение аренов в зависимости от температур кипения Довольно постоянно, и поэтому- при расчетах можно использовать следующие средние значения коэффициентов для стандартных фракций [149]  [c.128]


    Широкое распространение, в особенности за рубежом, при групповом анализе углеводородных смесей получил метод жидкостной хроматографии на силикагеле в присутствии флуоресцирующих (люминесцирующих) индикаторов — метод ФИА [153]. Сущность метода состоит в том что в колонку с силикагелем вводится анализируемая фракция с небольшим количеством флуоресцирующих индикаторов и красителя. В качестве вытесняющей жидкости служит этанол. Углеводороды при движении по силикагелю разделяются на зоны насыщенных алкенов и аренов. [c.129]

    Достоинства метода ионизации сложных смесей фотонами при энергии 10,2 эВ рассмотрены в работе [199]. Эти же авторы применили фотоионизационную масс-спектрометрию по методике молекулярных ионов для анализа высоко- и низкокипящих фракций нефти [189]. Такая техника близка к низковольтной масс-спектрометрии электронного удара, но благодаря изменению характера физического взаимодействия с веществом при переходе от электронов к фотонам и сохранении интенсивного пика молекулярных ионов, повышается доля наиболее энергетически выгодных (обычно наиболее ценных для структурного анализа) первичных процессов фрагментации. Ионизация фотонами в сочетании с химической ионизацией [200] была применена для получения отпечатка пальцев и частичного количественного анализа смесей аренов и алканов. [c.135]

    Выделенные в результате дистилляции фракции подвергают дальнейшему разделению на компоненты, после чего разл. методами устанавливают их содержание и определяют св-ва. В соответствии со способами выражения состава Н. и ее фракций различают групповой, структурно-групповой, индивидуальный и элементный анализ. При групповом анализе определяют отдельно содержание парафиновых, нафтеновых, ароматич. и смешанных углеводородов (табл. 4-6). При структурно-групповом анализе углеводородный состав нефтяных фракций выражают в виде среднего относит, содержания в них ароматич., нафтеновых и др. циклич. структур, а также парафиновых цепей и иных структурных элементов кроме того, рассчитывают относит, кол-во углерода в парафинах, нафтенах и аренах. Индивидуальный углеводородный состав полностью определяется только для газовых и бензиновых фракций. При элементном анализе [c.233]

    Экстрактивная ректификация редко используется при разделении нефтяных фракций для последующего их анализа, но широко применяется в промышленности для выделения и очистки алкенов, алкадиенов (бутадиена, изопрена), а также для выделения аренов (бензола и его гомологов, стирола) из продуктов пиролиза и каталитического риформинга нефтяных фракций. [c.78]

    Значение К зависит от строения аренов и их содержания в продукте. Поэтому при анализе бензинов их необходимо предварительно разогнать (пользуясь колбой с дефлегматором) на узкие фракции бензольную (60—95°С), толуольную (95— 122°С), ксилольную (122—155°С) и остаточную. В каждой фракции содержание аренов определяют отдельно. [c.115]

    Жидкостная адсорбционная хроматография. Жидкостная адсорбционная хроматография применяется для группового разделения углеводородов на алкано-циклоалкановую и ареновую фракции, а также для разделения аренов по степени цикличности. Хроматографические колонки заполняют силикагелем или двойным адсорбентом — оксидом алюминия и силикагелем. В качестве десорбентов при анализе керосиновых и масляных фракций для вымывания насыщенных углеводородов используют н-алканы С5 — С7, для десорбции ароматических и гетероатомных компонентов — бензол, спиртобензольные смеси, ацетон, хлороформ. Применение ступенчатого или непрерывного увеличения полярности подвижной фазы позволяет значительно уменьшить время удерживания веществ. Этот метод называется градиентным элюированием. [c.130]

    Широкое распространение, в особенности за рубежом, при групповом анализе углеводородных смесей получил метод жидкостной хроматографии на силикагеле в присутствии флуоресцирующих (люминесцирующих) индикаторов —м етод ФИ А. В колонку с силикагелем вводят анализируемую фракцию с небольшим количеством флуоресцирующих индикаторов и красителя. Ароматический индикатор хорошо растворим в аренах, но не растворяется в других углеводородах. При ультрафиолетовом облучении колонки зона аренов дает ярко-голубую флуоресценцию. Найдены также олефиновые индикаторы, растворимые в алкенах и вызывающие флуоресценцию в УФ-свете алкеновой зоны хроматографической колонки. По отношению высоты соответствующей зоны к высоте слоя адсорбента рассчитывают содержание алкенов и аренов в нефтяной фракции или нефтепродукте. [c.131]

    Благодаря высокой чувствительности УФ-спектроскопия находит применение для определения следов аренов в неароматических продуктах. Наличие во фракции гетероатомных соединений сильно увеличивает поглощение в УФ-спектре и может привести к значительным погрешностям анализа. [c.141]


    В настоящее время экстракция и экстрактивная ректификация редко используются при разделении нефтяных фракций с целью последующего их анализа, однако широкое применение эти методы нашли в нефтепереработке и нефтехимии. Экстракцией в промышленности выделяют бензол, толуол и ксилолы из катализатов рифор-минга бензиновых фракций, проводят селективную очистку масляных фракций, деароматизацию реактивных топлив. Предполагается также экстрактивная очистка жидких нормальных алканов от примесей аренов, выделение сульфидов и т. д. [c.30]

    Анализ неуглеводородных компонентов нефти. Этот анализ также может проводиться газовой хроматографией и в сочетании с другими методами. В нефтяных фракциях, наряду с полициклическими аренами обнаружено 60 азотсодержащих гетероциклических соеди-нений. [c.71]

    Метод группового анализа высококипящих аренов и алканов проводится обращенной газовой хроматографией. Сущность метода состоит в использовании анализируемой фракции в качестве неподвижной фазы, о свойствах которой судят по величинам удерживания произвольно выбираемых соединений—стандартов. Так, по объемам удерживания бензола и толуо- [c.74]

    Экстракцию полярными растворителями можно использовать для разделения moho-, би- и трициклических аренов. Двухступенчатой экстракцией серной кислотой различной концентрации предложено выделять сернистые соединения, в частности сульфиды из нефтяных фракций. Кислотной экстракцией можно выделять азотистые основания, порфирины. Таким образом, экстракция ириме-няется и ири анализе нефтяных фракций. [c.71]

    Впервые адсорбционная хроматография была использована для разделения Цветом еще в конце XIX в. Широкое распростра нение для разделения и анализа нефтяных фракций, метод полу чил с 40-х годов XX в. В настоящее время адсорбционная хрома тография — основной аналитический и препаративный метод от деления аренов от алканов и циклоалканов, разделения моно- ( полициклических углеводородов. [c.59]

    В последние годы — как и ранее — продолжают появляться работы, посвященные выявлению общих законом-ерностей фрагментации органических соединений под действием электронного удара с образованием положительных ионов [166, 167] и масс-спек-трам классов и типов соединений, встречающихся в нефтях. Впервые появилась монография, посвященная образованию и фрагментации отрицательно заряженных молекулярных ионов [168]. Можно рекомендовать и монографию [169], посвященную пиролитической масс-спектрометрии, которая успешно применяется к анализу неперегоняющихся органических составляющих нефти. Остается актуальной и книга [170], включающая статьи по молекулярной структуре нефти, анализу нефтяных фракций и масс-спектрам аренов. [c.131]

    Использование жидкостной хроматографии обычно приводит к разделению соединений по классам с дальнейшей идентификацией индивидуальных компонентов в смеси с помощью-масс-спек-трометрии по пикам молекулярных ионов. В работах [215, 218— 220] даны примеры успешного применения метода для анализа нефтяных фракций. Комбинированием газовой и жидкостной хроматографии и масс-спектрометрии проведена идентификация поли-ядерных аренов и бензохинолинов [215]. Описан прибор, сочетающий хроматограф и масс-спектрометр с ионизацией продуктами распада [221]. [c.138]

    Анализ высококипящих компонентов, входящих в состав керосино-газойлевых и масляных фракций нефти,— значительно более сложная задача по сравнению с анализом бензиновых фракций. Полная идентификация даже углеводородов керосиновых фракций — практически невыполнимая задача. Однако метод ГЖХ позволяет получать данные об индивидуальном составе отдельных групп углеводородов, предварительно выделенных из нефтяных фракций — н-алканов, углеводородов изопреноидного строения алкиладамантанов, аренов. [c.128]

    Масс-спектрометрия диссоциативного захвата электронов (отрицательных ионов) используется для структурного анализа нефтяных фракций. Достоинством этого метода является обязательное появление интенсивного пика молекулярного иона или (М—Н), а также (М—Н2) — для большинства известных классов соединений, встречающихся в нефтях (за исключением алканов и циклоалканов). Эта техника используется для определения конденсированных аренов, полиенов, серо- и азотсодержащих соединений. Она позволяет определять рассмотренные классы соединений в присутствии меркаптанов и циклоалканов. [c.77]

    Методы количественного анализа фракций нефти, нефтепродуктов и продуктов их превращений но ИК-снектрам основаны на использовании групповых полос поглощения, форма и интенсивность которых усредняется по данным для некоторого ряда индивидуальных соединений, относящихся к рассматриваемой группе. Точность количественного анализа ограничена в целом неизвестным значением погрешности, определяемым отличием средних коэффициентов поглощения от соответствующих коэффициентов поглощения реально присутствующих в смеси групп соединений. Поскольку количественный анализ аренов целесообразнее проводить по их электронным спектрам, ИК-спектры используются для количественного определения алканов и циклоалканов, включая достаточно тонкие элементы структуры, например СНг-группы (изолированные, геминальные, в изопропильных окончаниях цепей и др.), [c.79]

    Оценка содержания таких аренов проводится следующим способом. Отрезок гомологического ряда 55—125 разбивается на две части 55—69 и 83—125. Для аренов, не содержащих неконденсированные циклоалкильные фрагменты, отношение суммарных интенсивностей пиков 255—69/283—125 = 0,7/0,3 для аренов, содержащих такие фрагменты, оно равно 0,5/0,5, что определено на основании атласа спектров, а также анализа узких фракций аретов с меньшим iV - Такая оценка дает значения, увеличивающиеся с ростом Nq. Это может [c.236]

    Анализ аренов проводят на капиллярной колонке указанного выше размера, скорость газа-носителя 3—3,5 см /мин. При определении состава ароматических углеводородов широкой фракции н. к. — 200 °С в качестве неподвижных жидких фаз используют полярные вещества, например полиэтиленгликоль (ПЭГ), дибутилтетрахлорфталат (ДБТХФ), трикрезилфосфат и др. В табл. 4.7 приведены значения относительного времени удерживания аренов на двух неподвижных жидких фазах. Идентификацию хроматографических пиков проводят с помощью индивидуальных аренов. Температура хроматографической колонки во время анализа 100 °С. [c.142]

    СНг- и СНз-групп, изотопному составу углерода этой фракции, соотношению бензольных, нафталиновых и фенантреновых У В, по различиям в индивидуальном составе полициклических аренов [1]. Параметры, характеризующие структуру УВ, как показали данные корреляционнорегрессионного анализа [5, 11], имеют наименьшую тесноту связи с геологическими условиями залегания, т. е. они меньше всего подвержены влиянию внешних факторов. Изучение УВ высококипящих фракций нефтей позволило установить сходство между нефтями и ОВ пород в пределах одного и того же стратиграфического комплекса. Так, в ряде регионов (Предкавказье, Волго-Урал) наблюдалась близость между нефтями и ОВ материнских пород по таким показателям, как число нафтеновых циклов в молекуле парафино-нафтеновой фракции, индивидуальный состав полициклических ароматических УВ, и. с. у. нефтей и фракций. Отмечается однонаправленность изменений этих параметров по разрезу как в нефтях, так и в ОВ, что свидетельствует об их унаследованности нефтями от ОВ материнских пород. [c.10]

    Жидкостная адсорбционная хроматография применяется для группового разделения углеводородов на алка-но-циклоалкановую и ареновую фракции, а также для разделения аренов по степени цикличности. Хроматографические колонки заполняются силикагелем или двойным адсорбентом — окисью алюминия и силикагелем. В качестве деоэрбентов при анализе керосиновых и масляных фракций для вымывания насыщенных угле- [c.89]

    Относительно характерной особенностью для нефтей всех типов является рост содержания аренов по мере перехода от низкокипящих нефтяных фракций к высококипящнм с тем отличием, что в низкокипящих фракциях присутствуют индивидуальные арены, а в средне- и высококипящих фракциях ароматические фрагменты являются в основном частью молекул гибридного строения. Так, в бензиновых фракциях обнаружены все теоретически возможные гомологи аренов Са—Сд. По данным масс-сиектрометрии, типичная молекула алкилбензола масляных фракций содержит один длинный алкильный заместитель и метильные группы [51]. При анализе моноциклической арено-вой части из газойлевой фракции 230—235 °С с помощью цеолитов обнаружено, что алкилбензолы, адсорбированные на цеолитах, представляют собой, как правило, дизамещенные производные, имеющие одну метильную и одну длинную (6— 8 атомов углерода) алкильную цепь [52]. Неадсорбированную на цеолите фракцию в основном составляют тризамещенные ал- [c.30]

    В работе [150] исследовался состав вакуумных газойлей (фракция 350—500 °С) различных нефтей и приведен состав концентратов, выделенных карбамидным методом. Так, концентрат, полученный из западносибирской нефти, содержал всего 73 /о нормальных алканов, 11,2% изоалканов, 10,1% моноциклоалка-нов, 21 7о бициклоалканов, 1,9% трициклоалканов и 1,7 % аренов. Была исследована методом дифференциального термического анализа термическая устойчивость аддуктов тиомочевины с 32 изоалканами и циклоалканами [151]. Стабильность аддуктов характеризовалась также значением индивидуальной равновесной концентрации (Ср) углеводорода в инертном к тиомочевине растворителе, выше которой возможно образование аддукта. Значения Ср и температур диссоциации аддуктов с некоторыми из исследованных углеводородов приведены в табл. 18. Наиболее ста- [c.75]

    Газовая хроматография — важнейший метод анализа индивидуального состава бензиновых фракций нефти и некоторых более высококипящих компонентов — аренов, алканов нормального и изопреноидного строения, адамантанов и других полициклических циклоалканов, гетероатомных соединений. Особенно большие достижения в определении состава нефти и нефтепродуктов связаны с открытием в 1952 г. Мартином и Джеймсом газожидкостной хроматографии и в 1957 г. Голеем капиллярной хроматографии. [c.115]

    Анализ высококипящих углеводородов нефти. Этот анализ осложняется очень большим числом индивидуальных углеводородов, входящих в состав нефтяных фракций. Поэтому полная идентификация даже углеводородов керосиновых фракций газовой хроматографией — трудновыполнимая задача [89]. Однако газовая хроматография дает ценные сведения об индивидуальном составе отдельных групп углеводородов, выделенных различными методами из нефтяных фракций — нормальных алканов, углеводородов изопреноидного строения, алкиладамантанов, аренов (табл. 33). [c.119]

    Более точен рефрактометрический метод группового анализа узких стандартных бензиновых фракций, требующий удаления аренов и измерения показателей преломления Лд исходной и деароматизированной фракций. Расчет содержания аренов и циклог алканов проводится также с помощыр номограмм [150]. [c.128]

    Разработан метод группового анализа высококипящих смесей аренов и алканов на основе обращенной газовой хроматографии [158, 159]. Сущность метода состоит в использовании анализируемой фракции в качестве неподвижной фазы, о свойствах которой судят по величинам удерживания произволь 10 выбираемых соединений— стандартов. Так, по объемам удерживания бензола и толуола по отношению к октану можно приблизительно оценить долю ароматических атомов углерода в анализируемой фракции. Калибровочная кривая была построена предварительно по 13 индивидуальным высококипящнм углеводородам и их смесям. [c.130]

    Для решения некоторых частных структурных задач могут быть использованы разные методы фиксирования метастабильных ионов, т. е. ионов, образующихся не в ионном источнике, а в беспо-левом пространстве (первом или втором) масс-спектрометра с двойной фокусировкой. Так, были применены спектры метастабильных переходов для определения терпанов и стеранов во фракциях нефти [189]. Вариант техники прямого анализа дочерних ионов был использован для различения изомерных полициклических аренов [190j, дающих практически не различающиеся обычные масс-спектры. Этим же методом определяли элементы структуры ванадилпорфиринов [190]. Для анализа последних использовался и метод дефокусировки [191]. [c.134]

    Анализ группового состава масляных фракций несколько сложнее. С повышением молекулярной массы нефтепродуктов в них все большую долю составляют гибридные структуры и различия между классами углеводородов стираются. В этом случае задачей анализа является не только определение количества аренов, циклоалканов и алканов в продукте, но и изучение гибридных соедиисний по содержанию в них различных [c.114]

    Групповой анализ углеводородов — анализ по типу молекул при этом определяется содержание аренов, циклоалканов и алканов. К аренам относят молекулы, содержащие хотя бы одно ароматическое кольцо. К циклоалканам относят молекулы, содержащие хотя бы одно насыщенное кольцо и, наконец, алканами считаются молекулы углеводородов, не имеющие ни ароматических, ни насыщенных колец, ни двойных связей. Индивидуальный состав в настоящее время полностью может быть определен лишь для газовых и бензиновых фракций. [c.63]

    Газовая хроматография (ГХ) — важнейший метод анализа индивидуального состава бензиновых фракций нефти и некоторых более высококипящих компонентов — аренов, алканов нормального и изопре-ноидного строения, адамантанов и других полициклических циклоалканов, гетероатомных соединений. [c.66]


Смотреть страницы где упоминается термин Анализ аренов фракции: [c.106]    [c.160]    [c.149]    [c.107]    [c.40]   
Смотреть главы в:

Химия нефти -> Анализ аренов фракции




ПОИСК





Смотрите так же термины и статьи:

Анализ фракций



© 2025 chem21.info Реклама на сайте