Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение урана в сплавах уран цирконий

    Для определения урана в его сплаве с Zr может быть использован также метод потенциометрического титрования урана (IV) в присутствии Zr [919] для восстановления применяют свинцовый редуктор уран (IV) титруют раствором сульфата церия (IV). Фотометрическое определение урана а его сплаве с цирконием с реагентом хлорфосфоназо III описано на стр. 140. [c.356]


    Есть указания [745], что уран в сплаве его с цирконием можно определить осаждением таннином из водного раствора при pH 8 после отделения циркония экстрагированием хлороформом комплекса циркония с купфероном в присутствии циркония уран может быть определен полярографическим [1051] или рентгено-флуоресцентным методом [1044]. [c.356]

    Разработаны экстракционно-фотометрические методы определения марганца в уране и его соединениях, алюминии [198, 1170, 1256], цирконии и его сплавах [684], ультрачистой воде [1255], железе и сталях [244]. [c.66]

    Бэкон и Милнер [327, 328] определяли уран в сплавах с цирконием дифференциальным высокоизбирательным спектрофотометрическим методом в форме сульфатного комплекса уранила. Измеряют оптическую плотность при 430 ммк. Ошибка определения составляет 0,1%. [c.197]

    Опубликован ряд работ по полярографическому определению никеля в уране [783, 1099], золоте [1043], кремнии [1042], цирконии [427, 1215] и его сплавах [385, 427], а также в легких сплавах на основе алюминия [640], в магнии [219], в электролитических ваннах [579], сточных водах [1052] и других промышленных отходах. [c.135]

    Метод пригоден для определения титана в его сплавах с ураном, цирконием, молибденом, вольфрамом, ниобием. [c.136]

    Рост требований науки и техники к чистоте материалов заставил аналитическую химию обратиться к определению малых количеств примесей в чистых веществах. В первые годы развития атомной промышленности необходимы были высокочистые уран, торий, бериллий, цирконий, ниобий и другие металлы. В дальнейшем еще более чистые вещества потребовались электронной технике — германий, кремний, арсенид галлия, фосфид индия и другие полупроводники. Необходимо было наладить производство люминофоров, сцинтилляционных материалов, которые также должны отвечать жестким требованиям в отношении чистоты. Перед химической промышленностью была поставлена задача изготовления особо чистых химических реактивов и большого числа чистых вспомогательных веществ. Стали существенно более чистыми металлы и сплавы, в частности употребляемые как жаропрочные и химически стойкие. [c.3]

    Определение в циркон-, уран-, молибден-вольфрамовых сплавах с применением ПАР [c.143]

    В 40—50-е годы прогресс советской аналитической химии чистых веществ был прежде всего связан с развитием атомной промышленности, которой необходимы высокочистые уран, цирконий, ниобий и другие металлы, а также графит. В этой области активно работали многие химики-аналитики, например П. Н. Палей. В 60-е годы или несколько раньше еще более чистые вещества потребовались электронной технике —германий, кремний, арсенид галлия и другие полупроводники. Необходимо было наладить производство люминофоров, сцинтилляционных материалов, которые также должны отвечать жестким требованиям к чистоте. Перед химической промышленностью была поставлена задача изготовления особо чистых химических реактивов и большого числа чистых вспомогательных веществ. Стали существенно более чистыми металлы и сплавы, в частности применяемые как жаропрочные и химически стойкие. Аналитическая химия была призвана обеспечить новые области техники эффективными методами контроля. Главное требование состояло в нахождении способов определения ничтожных примесей в веществах содержание примесей часто составляет 10 —10- %. Решение этой задачи требовало снижения предела обнаружения элементов во много раз. [c.106]


    В настоящее время резко возрос интерес химиков к определению малых количеств примесей в чистых веществах. Это связано с организацией и развитием атомной промышленности, которой необходимы сверхчистые уран, торий, бериллий, цирконий, ниобий и др. металлы. Еще более чистые вещества потребовались в электронике и электротехнике (германий и кремний, селен и селени-ды, арсенид галлия, антимонид сурьмы, фосфиды индия и галлия). Для изготовления лазеров нужны чистый рубидий и редкоземельные элементы. Новая техника нуждается также в высокочистых хлориде и бромиде кадмия, фторидах лития и кальция, иодиде калия, бромиде и иодиде индия, цезии высокой чистоты, гидриде цезия и др. Стали существенно более чистыми материалы, с которыми работают в промышленности химических реактивов, в черной и цветной металлургии при производстве жаропрочных и химически стойких сплавов и т. д. [c.9]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]

    Разработаны методы определения кобальта в металлических никеле [88, 109, 584, 775, 957, 1002, 1082, 1188, 1200, 1417, 1518], натрии [1321, 1458], меди [686], магнии [343, 830], алюминии [1395], цирконии и титане [343, 927, 1071, 1081, 1445, 1499], свинце [186], висмуте [233], уране [1387], стеллите [73], победите [357], в сплавах кобальт — платина [1488], хром — кобальт [96], вольфрам— кобальт [520], в карбидах вольфрама и титана [1208] и других объектах [227]. [c.198]

    Основным ядерным топливом в атомных реакторах служит уран-235, способный к ядерному делению при облучении нейтронами, имеющими определенную скорость движения. Обычно в атомных реакторах используется диоксид урана иОа. Кроме того, в качестве ядерно-го топлива могут быть использованы плутоний-239 и уран-233. Ядерное топливо находится в тепловыделяющих элементах (ТВЭЛах) — трубках из циркония, нержавеющей стали или других сплавов (рис. [c.527]

    ОБЪЕМНОЕ ОПРЕДЕЛЕНИЕ ЦИРКОНИЯ В СПЛАВАХ С НИОБИЕМ, УРАНОМ И ДРУГИМИ МЕТАЛЛАМИ = [c.335]

    Метод применим для определения циркония в сплавах с ниобием, ураном и другими металлами, а также в концентратах, отвалах и других материалах. [c.335]

    Объемный метод определения циркония в его бинарных сплавах с ураном. [c.270]

    Для сплава уран—молибден—ниобий, кроме серной кислоты той же концентрации, в растворе находится муравьиная кислота до 0,2 М. Поправку на поглощение при 430 ммк титана, молибдена, циркония, ниобия определяют по искусственно приготовленным шесям из урана и указанных элементов. Ошибка определения урана составляет 0,1% (отн.). [c.108]

    Метод потенциометрического титрования урана (IV) сульфатом церия (IV) использован для определения урана в металлическом цирконии [919] и его сплаве с ураном. После разложения образца циркония уран (VI) восстанавливают в солянокислом растворе на свинцовом редукторе, добавляют раствор соли Fe (1П) и образующееся при этом Fe (II) титруют потенциометрически стандартным раствором e(S04)2, используя платиновый индикаторный электрод. Данным методом можно определять от 5 до 0,05% [c.214]


    Метод искры использован для определения галл1ия е алюминии, титане и цирконии [972], индии [1131], в сплавах золота [910], а также в сплавах индий — галлий [1001, 1148, 1149], индий — галлий — свинец (1001J, плутоний — уран — цирконий [906], в реакторных материалах [737, 786], золе синтетического волокна [972], зернах пшеницы и кукурузы [184. [c.160]

    Определение ниобия в сплавах с молибденом, ураном, цирконием и вольфрамом [186]. Определению 0,25—2% ниобия с использованием ПАР в оксалатном растворе не мешают до 5 мг XV, до 10 мг Мо и и, до 1 лгг 2г. При добавлении 0,25 мл 0,025 М раствора ЭДТА определению не мешают до 50 мкг А1, Со, Ре и N1, мешает тантал. [c.130]

    Диэтилдитиокарбаминаты. Экстракционно-фотометрический метод с помощью диэтилдитиокарбамина (ДДТК) и различных органических растворителей применен для определения меди в алюминии и стали [279], сложнолегированных сталях [280], свинце и кабельных свинцовых сплавах [281], цирконии, цирка-лое-2 и в сплавах урана [282], металлическом уране [283], в присутствии кобальта [284], никеля и кобальта [285], в газовой саже [286], почвах и золе растений [287, 288], в сыворотке крови [289]. [c.248]

    Объединенные фильтраты от оксалатов нейтрализуют аммиаком, вводя его в очень небольшом избытке затем добавляют 1 г таннина, растворенного в небольшом объеме воды, который осаждает в виде оксалатов, фосфатов или танниновых комплексов все присутствующие основания. Осадок смешивают с небольшим количеством бумажной массы, фильтруют под небольшим вакуумом, промывают горячим 2%-ным раствором азотнокислого аммония и прокаливают в платиновом тигле. Остаток сплавляют с 2—3 г соды, сплав извлекают горячей водой, нерастворимые вещества от( )ильтровывают, промывают 2%-ным раствором соды до удаления фосфата, возвращают обратно в стакан и напревают с концентрированной соляной кислотой. После разбавления и добавления бумажной массы и хлористого аммония железо, титан, уран и цирконий дважды выделяют двукратным осаждением аммиаком, не содержащим карбонатов в фильтрате определяют кальций. Осадок гидроокисей прокаливают и снова сплавляют с содой для отделения последних следов фосфорной кислоты нерастворимый остаток употребляют для определений железа, урана, титана и циркония обычными методами. Два содовых фильтрата содержат алюминий его выделяют и взвешивают в виде AIPO4. Содержание урана в монаците обычно очень мало и его лучше определять хроматографически из отдельной навески, как описано в гл. XXI, разд. IX. [c.150]

    Для определения урана в сплавах с цирконием может быть использован метод потенциометрического титрования урана (IV) в присутствии циркония [739]. Для восстановления урдна применяют свинцовый редуктор. Уран (IV) титруют раствором сульфата церия (IV). Уран в присутствии циркония может быть также определен полярографическим [686] или рентгенофлуоресцентным методом [372]. [c.197]

    Карминовый метод определения бора применяют, как правило, при относительно высоком содержании бора в различных материалах куркуми-новым методом определяют меньшие его количества. Карминовым методом определяют бор в стали [69], молибденовых сплавах [66], цирконии и его сплавах [68], титане и его сплавах [17, 70], сплавах кобальта н никеля [70], сплавах урана с алюминием [71], нитрате уранила [72, 73], кремнии [74], стекле ]4, 75], искусственных удобрениях [19, 76], фторидах ]12, 77], почвах и растениях J65], водах [65], углеродных [78] и биологических материалах [79]. [c.121]

    Разработан метод определения циркония в сплавах на основе ниобия и урана [89, 631]. В условиях титрования (pH — 3) ниобий гидфолизуется и мешает определению циркония, а уран в больших количествах препятствует определению вследствие своей интенсивной окраски. Цирконий отделяют от ниобия и урана в виде фтороцирконата бария. Наиболее полно фтороцирконат бария осаждается из раствора, содержащего до 15 вес. % HNOs и около 4 вес.% НаРа. [c.122]

    Аналогичный метод спектрального анализа бинарных сплавов циркония с ураном описали Делесполь и Ливенс [418]. Определение циркония в несколько более широком интервале концентраций (0,5—16,0%) выполняется практически при таких же условиях. Для достижения гомогенности эталонов рекомендуется проводить восемь последовательных плавок в дуговой печи в атмосфере аргона. [c.179]

    Разработанный Голебом искровой метод определения циркония и ниобия в их сплавах с ураном был им же применен [473а] для определения циркония и других основных компонент в сплаве фиссиум (2,5% Мо, 2% Ки, 0,2% НЬ, 0,3% Рс1, 2,5% 2г, остальное — уран). [c.180]

    Согласно Милнеру и Фенна [77], цирконий можно очень хорошо определять обратным титрованием избытка комплексона хлоридом железа (П1). Так как некоторые элементы мешают этому определению, цирконий следует предварительно выделить. Авторам удалось осадить цирконий миндальной кислотой (по Куминсу [78]) из киачого раствора. Этот метод они применили для определения циркония в его сплавах с ураном. [c.492]

    Для определения кремния значительно чащ применяют синий кремнемолибденовый комплекс. В виде этого комплекса определяют кремний в чистом теллуре [174], в воде бойлеров и накипи [175], в пробах с высоким содержанием кремния [176], огнеупорных материалах [177], глиноземе [178,] воде [179, 180], растворах нитрата уранила [181], ферросиликохроме [182], плавиковом шпате и флюо-ритовом концентрате [183], стекле [184], неметаллических включениях [185], окиси бора [186], техническом перборате [187], железных рудах и других продуктах металлургического производства [188], химических реактивах [189], двуокиси урана [190], сталях, алюминии, цирконии, титановой губке, сплавах кремния и никеля, урана и кремния, бифториде калия [191], хроматах кальция и магния [192], минеральном сырье [193] и в других объектах [194—197]. [c.128]

    Дель-Гроссо и Лэндис разбили анализ циркония и его сплавов, в том числе и сплава с ураном, на четыре этапа. Первые два этапа охватывали определение примесей с помощью метода фракционной дистилляции с носителем, третий и четвертый этапы предназначались для определения W и Hf с помощью метода полного сжигания пробы. Тонко измельченный порошок Zr или сплава осторожно прокаливают в муфельной печи. Для определения 29 элементов, указанных в табл. 30, двуокись циркония смешивают с носителем (5% Ag l). Затем отбирают пробы весом 100 мг и переносят в электроды, применяемые в методе Скрибнера и Муллина. Спектры проб и эталонов трижды фотографируют на одну фотопластинку на кварцевом спектрографе Гертнера. Спектры возбуждаются в дуге постоянного тока (г = 10 а). Промежуток между электродами составляет 6 мм, [c.335]

    Куркуминовый метод благодаря исключительно высокой чувствительности пригоден для определения очень малых количеств бора. Работы по применению куркуминового метода включают определение бора в кремнии ]2, 41—44], хлорсиланах [26, 41, 45], германии [2], уране [35, 46, 47], цирконии и его сплавах [35, 48—50], гафнии и титане 150], никеле [51, 52], стали [5, 35, 53], металлическом натрии [13], бериллии и магнии [35], силикатах ]54], фосфатах [55], почве [56], растительных материалах [32, 56], химических реагентах [57, 58] и морской воде [59]. [c.119]

    Детально изучено отделение алюминия от основных и второстепенных составляющих этих сплавов и Определение алюминия с помощью ауринтрикарбоновой кислрты Так как анализ длинный, мы не приводим здесь подробное описание, а даем характеристику метода в общих чертах. Сурьму и олово отгоняют в виде бромидов, а свинец удаляют в виде сульфата. Оставшиеся небольшие количества свинца, железа и многих других элементов (стр. 199) удаляют электролитически на ртутном катоде. Экстракцией купферратов хлороформом удаляют титан, цирконий, следы железа (III), и частично ванадий (V). Экстракцией 8-оксихинолятов хлороформом при pH 5 в присутствии перекиси водорода отделяют алюминий от бериллия, скандия, иттрия, хрома и ванадия уран сопутствует алюминию. Окончательное определение алюминия проводят в присутствии меркаптоуксусной кислоты. Показано, что 10—80 у алюминия из образцов весом 2 г извлекаются достаточно полно. [c.215]


Смотреть страницы где упоминается термин Определение урана в сплавах уран цирконий: [c.6]    [c.127]    [c.312]    [c.341]    [c.120]    [c.138]    [c.239]   
Аналитическая химия урана (0) -- [ c.355 ]

Аналитическая химия урана (1962) -- [ c.355 ]




ПОИСК





Смотрите так же термины и статьи:

Определение циркония в сплавах

Сплавы с цирконием

Уран от циркония

Уранил определение

Цирконий определение от урана



© 2025 chem21.info Реклама на сайте