Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Релаксация полимеров структурная

    В литературе описаны различные виды нестабильности течения в процессе вальцевания [18]. Основной причиной разрушения потока в данном случае является накопление эластической энергии в процессе деформации (переработки) полимера, а не только малая величина адгезии эластомера к материалу валков. Скорость накопления избыточной эластической энергии в сажекаучуковой системе определяется соотношением между максимальным временем релаксации соответствующих структурных элементов и скоростью внешнего воздействия (скоростью сдвига). [c.79]


    Гуревича и Эйринга. Из этих представлений следует, что время релаксации является функцией не только температуры, но и напряжения. Внешнее напряжение резко понижает время релаксации полимера путем снижения энергии активации структурных превращений [1]. [c.10]

    Восстановление размеров ориентированных на воздухе ПММА и ПК в области температуры стеклования является хорошо известным фактом, связанным с энтропийным эффектом восстановления наиболее вероятного конформационного набора макромолекул [2, 3]. В случае ПК, подвергнутого холодной вытяжке на воздухе (рис. 3.1, кривая 4), наблюдается такл е и низкотемпературная, ниже температуры стеклования, усадка. Это также хорошо известно из литературы [5, 6, 129—131]. Интерпретация такого термомеханического поведения полимеров построена на представлениях об их структурной гетерогенности. Действительно, характер релаксации деформации полимера при нагревании, свидетельствует о том, что существуют два варианта молекулярного механизма вынужденной эластической деформации и последующей релаксации полимера. [c.69]

    В заключение отметим, что при рассмотрении природы механических релаксационных процессов возникает вопрос о взаимосвязи между временами жизни структурных элементов и временами релаксации. Эта проблема находится в настоящее время в стадии постановки, а не решения. Для полимеров, по различным оценкам, максвелловское время релаксации, характеризующее тот или иной процесс механической релаксации полимеров, на один-два порядка больше соответствующего времени структурной релаксации [4, с. 33 53—551. [c.127]

    Четвертая зона — зона термообработки, где происходит завершение процессов релаксации и структурных перестроек. В зависимости от величины действующего напряжения и молекулярной структуры полимера релаксационные процессы проводятся по-разному. [c.232]

    Монография посвящена одному из наиболее важных в практическом отношении явлений, наблюдавшихся в полимерах, — переходу в стеклообразное состояние. Авторы, последовательно рассматривая современные представления о структуре аморфных веществ и описывая различные аспекты стеклования, переходят к развиваемой ими флуктуационной теории структурной релаксации. Физическая модель стеклования, предложенная авторами, позволила им вывести кинетическое уравнение, описывающее структурн)ю релаксацию полимера в области перехода. [c.240]

    На первом этапе растяжения (ee>гf , К — растет) превалирует первый процесс. По мере растяжения происходит все более сильное разрушение структуры, облегчающее перестройку (структурную релаксацию) полимера. Область деформаций за максимумом Я на предстационарной стадии деформирования соответствует преобладающему влиянию структурной релаксации, которая приводит к снижению вязкости, несмотря на продолжающееся (хотя и более медленное) возрастание высокоэластической деформации. [c.236]


    Релаксационный характер механических свойств и физических состояний полимеров. Специфика полимеров заключается не только в проявляющейся при определенных условиях способности к большим обратимым деформациям, но также в том, что их механические свойства носят резко выраженный релаксационный характер, т. е. сильно зависят от временной, а в случае периодических деформаций, от частотной шкалы. Эта. зависимость, как и высокоэластичность, является следствием длинноцепочечного строения полимеров и обусловлена необходимостью длительных промежутков времени (времен релаксации) для конформационной перестройки большого числа связанных ме.жду собой структурных элементов цепи при переходе ее из одного равновесного состояния в другое. Время релаксации является функцией температуры и за- [c.40]

    Особенности строения макроцепей и многообразие форм молекулярной подвижности в полимерах приводят к множеству релаксационных процессов, каждый из которых связан с движением кинетических единиц определенного вида и может быть описан спектром времен релаксации. Времена релаксации, связанные с подвижностью крупных отрезков цепи, могут быть довольно большими. Соответствующие им релаксационные процессы протекают медленно. Мелкомасштабные движения макроцепей, обеспечивающие образование дырок , ускоряют релаксационные процессы. Приближенный расчет времени релаксации таких быстрых процессов при объемной деформации некоторых полимеров (сополимеров), выполненный в работах [16—18], показывает, что при проникновении низкомолекулярного компонента в полимер проницаемость последнего контролируется перемещением структурных элементов макроцепей только в начальный период процесса набухания (время релаксации 10 — 10 с). [c.297]

    Подобный подход может быть назван релаксационно-термодинамическим или термокинетическим при всей его общности наиболее целесообразно применять его именно к полимерам, так как для них специфично наличие многих уровней структурной организации. Каждый из этих уровней можно характеризовать своим (средним) временем структурной релаксации, и время это т сопоставимо с длительностью воздействия 1 на систему. Именно два [c.16]

    Процесс наблюдается только в присутствии в полимере активного наполнителя. Для полимеров, указанных в табл. I. 1, время релаксации -процесса при 20 °С равно величине порядка 1 с. Отчетливо наблюдается соответствующий максимум механических потерь. Считается, что этот максимум связан с изменением сегментальной подвижности в адсорбционном (граничном) слое полимера, поэтому энергия активации данного процесса выше, чем процесса стеклования. -Процесс происходит без перестройки в целом сажевой структурной пространственной сетки, так как частицы сажи проявляют подвижность при более высоких температурах и больших временах наблюдения. [c.63]

    Таким образом, процессы стеклования и размягчения имеют типично кинетические отличия. Процесс стеклования проще в том отношении, что структура полимера в структурно-жидком состоянии является практически однозначной функцией температуры и давления, но сложнее тем, что энергия активации и время релаксации — нелинейные функции температуры и давления Процесс размягчения сложнее в том отношении, что структура стекла, полученного из одного и того же вещества, может быть самая различная в зависимости от тепловой предыстории , но проще тем, что энергия активации стеклообразного состояния выражается простой линейной зависимостью от температуры и давления. [c.95]

    Присущая полимерам даже в вязкотекучем деформационном состоянии высокоэластичность накладывает отпечаток на особен- ности их течения. Роль высокоэластичности весьма существенна в неустановившемся режиме течения. В процессе течения происходит разрушение надмолекулярных структур, затрудняющих развитие деформаций. При разрушении структур начинают протекать процессы структурной релаксации, по завершении которых достигается процесс установившегося течения. [c.180]

    Существенное влияние на релаксационные диэлектрические потери оказывает также пластификация полимеров. С ростом концентрации пластификаторов в полимере время релаксации, как правило, уменьшается, а область максимума дипольно-сегментальных потерь сдвигается в сторону низких температур, поскольку пластификация, как правило, существенно снижает температуру структурного стеклования. [c.248]

    В отличие от низкомолекулярных жидкостей в линейных полимерах вследствие их высокой вязкости процессы структурной релаксации, связанные с перестройкой надмолекулярных структур, должны наблюдаться и при температурах существенно более высоких, чем температура стеклования Тс, т. е. в высокоэластическом и вязкотекучем состояниях. Для наблюдения структурной релак- [c.26]


    Кинетическая теория дает результаты, вполне удовлетворительно согласующиеся с экспериментальными данными изучения структурного стеклования полимеров. В первом приближении каждая кинетическая единица (сегмент) может принимать два энергетических состояния — основное и возбужденное (рис. 2.3)—и характеризоваться одним временем релаксации т (вместо совокупности [c.40]

    Различие между Гс и Гм отчетливо проявляется на температурной зависимости динамического модуля Юнга (рис. 2.6). Ниже Гс полимер находится в стеклообразном состоянии и температурная зависимость lg слабо выражена, как и у любого твердого тела. Выше Гс наблюдается более резкая зависимость логарифма модуля упругости от температуры в связи с тем, что в структурно-жид-ком состоянии структура полимера непрерывно изменяется с температурой. При дальнейшем увеличении температуры в области, где время релаксации снижается до величин, сравнимых с периодом колебаний, в полимерах проявляется высокоэластическая деформация. Амплитуда деформации полимера с увеличением температуры возрастает до тех пор, пока не достигнет предельного значения, а модуль — весьма низкого значения (например, для полимеров модуль одноосного сжатия в стеклообразном состоянии Ео примерно в 10 —10 раз больше, чем соответствующий модуль в высокоэластическом состоянии). [c.43]

    Структурные элементы, из которых образованы гибкоцепные полимеры (мелкомасштабные элементы, сегменты, надмолекулярные образования в виде микроблоков, частицы активного наполнителя, диполь-дипольные локальные поперечные связи, поперечные химические связи и т. д.), играют в релаксационных процессах роль кинетических единиц различных размеров и разной подвижности. Каждый тип кинетических единиц характеризуется своим наиболее вероятным временем релаксации Тг, =1, 2,. .., п (где п — число кинетических единиц различных типов и, следовательно, число различных релаксационных переходов, которые на спектре времен релаксации проявляются в виде тех или иных максимумов). [c.129]

    Совпадение максимумов свечения на кривой РТЛ с областями кинетических и структурных переходов в полимерах дает основание считать, что акты рекомбинации зарядов осуществляются за счет размораживания теплового движения кинетических единиц, на которых находятся электронные ловушки или центры свечения. При этом время жизни электрона в ловушке определяется временем релаксации той кинетической единицы, на которой находятся связанные электроны. [c.242]

    Характер температурных зависимостей объема и коэффициента объемного расширения полистирола (ПС) обусловливается релаксационными процессами при структурном стекловании и размягчении образцов (рис. 10.15 и 10.16). Для отожженного образца ПС при нагревании его со скоростью 0,5 К/мин в области размягчения наблюдается аномальное увеличение объема, чему соответствует пик на кривой коэффициента расширения. На изменение объема полимера оказывают влияние время и температура выдержки образцов вблизи области перехода. Чем больше скорость охлаждения образцов, тем выше их Тс. При длительном отжиге ПС при Т<7 с наблюдается релаксация структуры и длины образцов стремятся к своему равновесному значению. При этом чем ниже температура, тем медленнее протекает процесс релаксации струк- [c.266]

    А. А. Трапезниковым с сотр. с помощью новых методов измерения и приборов проведены многочисленные исследования реологических свойств концентрированных растворов полимеров преимущественно в неполярных растворителях. При этом определяли не только напряжение сдвига, но и обратимую деформацию и исследования проводили не только в стационарном потоке, но и в предстационарной стадии деформации. Эти исследования показали, что для многих систем можно наблюдать свойства, присущие как типичным пластическим системам, так и жидкостям, не подчиняющимся закону Ньютона и вязкость которых при истечении определяется ориентацией молекул. Для объяснения сложного комплекса свойств подобных систем необходимо отказаться от привычного представления о том, что ниже предела текучести невозможно течение. Совершенно очевидно, что если в принципе необратимая релаксация возможна при любых малых напряжениях сдвига, то и течение возможно при таких же малых напряжениях. Вопрос заключается только в продолжительности измерения и чувствительности регистрирующих приборов. В связи с этим было предложено новое понятие о пределе текучести как отражающем не появление течения, а изменение скорости течения, связанное со структурными изменениями в системе. [c.463]

    Процессы релаксации в полимерах, характеризующие переход системы из неравновесного в равновесное состояние, определяются молекулярной подвижностью (движением различных по размерам кинетических единиц). Полимеры могут рассматриваться как сложные системы, состоящие из ряда слабо взаимодействующих подсистем. Каждая подсистема состоит из однотипных кинетических единиц (релаксаторов). Из-за наличия характерной для полимеров структурной неоднородности эти релаксаторы находятся в разных условиях и их подвижность не может быть полностью описана схемой с одним наивероятнейшим временем релаксации. Использующиеся для количественного описания процессов молекулярной подвижности в полимерах дискретные и непрерывные спектры приводят к эквивалентным результатам. Однако при изучении механизмов медленных релаксационных процессов, связанных с флук-туационными надмолекулярными образованиями (различного вида микроблоками), дискретный спектр дает большую информацию. Перспективно использование дискретного спектра и при анализе других процессов релаксации, обусловленных локальной подвижностью. В то же время для процессов, связанных с сегментальной подвижностью, предпочтительнее использование непрерывного спектра, так как при этом на нем проявляется максимум, высота и ширина которого являются дополнительными к lgTг параметрами, характеризующими их особенности. [c.145]

    Сравнение условий сужения линии ЯМР с проявлением структурного стеклования при охлаждении полимера со стандартной скоростью 3 К/мин показывает, что 7 с нельзя отолсдествлять с т сун(, которая может быть сопоставлена с температурой стеклования полимеров в периодических силовых полях. При этом времени корреляции Тс может соответствовать время релаксации полимеров во внешнем поле. В ряде случаев обнаружено совпадение Тсут с температурой механического стеклования, измеренной ультразвуковым [c.223]

    Важнейшим параметром флуктуацнонной сетки зацеплений является среднее время жизни узла, или, что то же самое, время релаксации при механическом воздействии на элементы, образующие узел. Если это время неограниченно велико и сравнимо со временем существования химических связей, то напряжения в сетке не релак-сируют, если не считать механизма химической релаксации из-за разрыва химических связей. Тогда полимер способен неограниченно долго сохранять деформации или напряжения. Этот случай отвечает резинам или вообще полимерам с трехмерным структурным каркасом. Если время релаксации очень мало, во всяком случае существенно меньше, чем продолжительность наблюдения, то структурные элементы, с точки зрения наблюдателя, оказываются совершенно не связанными, они свободно проскальзывают в узлах, и система ведет себя как типичная жидкость. Во всех промежуточных случаях разыгрывается широкий комплекс релаксационных явлений, связанный с существованием набора (спектра) времен релаксации движений полимерной цепи. При этом весь спектр упрощенно можно разделить на две части — область медленных релаксационных процессов, завершающихся медленнее, чем распадаются узлы сетки флуктуационных связей, и область быстрых релаксационных процессов, которые осуществляются быстрее, чем происходит релаксация в структурных узлах сетки. По отношению к первой группе времен релаксации факт существования сетки является определяющим для поведения системы, по отношению ко второй группе он не сущестаён. [c.274]

    После окончания развития высокоэластической деформации и за-верщенця структурной релаксации, полимер переходит в равновесное состояние, Соответствующее режиму установившегося течения в поле продольного градиента скорости. Это состояние отвечает динамическому равновесию процессов ориентации и дезориентации, когда скорости возникновения и распада межмолекулярных связей равны между собой. Соответственно, значения вязкости и релаксационных характеристик материала становятся постоянными и перестают зависеть от деформации среды. [c.422]

    Частота -механичеокого воздействия доллша быть больше скорости релаксации тех структурных элементов, которые подлежат механокрекингу. При приложении частот, соответствующих меха-.чнческому стеклованию234 235 эластичных полимеров, они деструк-тнруются со скоростью, соответствующей скорости их деструкции 13 застеклованном состоянии. [c.114]

    Влияние пластификации на процессы дипольной релаксации полимеров достаточно подробно исследовано для молекулярной пластификации. Зависимость этих процессов от химической природы и концентрации межструктурных пластификаторов изучена пока недостаточно, хотя преимущества последних очевидны пластифицирующий эффект достигается при концентрации 0,01—0,1% (от массы пленкообразующего полимера). Механизм межструктурной пластификации лакокрасочных покрытий впервые рассмотрен [52] на примере хлорированных полимеров (ХПВХ, ВХВД-40) и нитрата целлюлозы при использовании в качестве структурных пластификаторов совола (хлорированный дифенил) и касторового масла, а в качестве молекулярного пластификатора — дибутилфталата. Установлено, что при межструктурной пластификации величина tg б дипольно-сегментальных потерь проходит через максимум в области концентраций 0,02—0,03% (от массы полимера) и далее плавно возрастает, что объясняется уменьшением заторможенности движения диполей на границах структурных образований при воздейс<вии внешнего электрического поля. [c.50]

    Приведенные данные показывают, что процесс структурной релаксации полимеров в интервале стеклования должен описываться моделью, учитывающей нелине1 1ность и неэксионенциальный. характер явления. Последнее обстоятельство может быть формально учтено с помощью эмпирического соотношения [80] [c.65]

    Идея первого подхода заключается в том, что дополнительные проходные молекулы могут образоваться в результате последовательного протекания процессов раскалывания стопок складчатых ламелей, отслаивания сложенных фрагментов цепей от боковых поверхностей ламелей и их вытягивания в направлении оси ориентации, сопровождающих пластическую деформацию частично кристаллического полимера при холодной вытяжке или экструзии. Предполагается, что кинетическая стабилизация развернутой конформации новых проходных цепей в составе микрофибрилл обеспечивается громадными временами релаксации естественных структурных механизмов, стремящихся вернуть систему в исходное изотропное состояние (например, энтропийная упругость проходных молекул), при проведении вытяжки в области Т С Тщ. [c.180]

    Обсуждаемый переход структурно-жидкого полимера в твердообразное состояние называют структурным стеклованием в отличие от механического стеклования, в котором твердоподобие полимера при действии силового поля вызывается ориентационными эффектами или же является результатом возрастания частоты приложенного напряжения. Когда время действия силы становится меньше времени релаксации, полимер реагирует на воздействие подобно твердому телу. [c.78]

    Однако это уравнение отражает рассматриваемую зависимость лишь в суммарной форме. В действительности эти с оотношения являются более сложными. Релаксация в той илн другой степени относится ко всем формам перемещения частиц в материале, но скорость релаксации их в данном полимере при одинаковых вйешних условиях может различаться в сильной степени. Перемещения электронов практически не задерживаются, перемещения же атомов и атомных групп и изменения их колебательного движения задерживаются в различной степени в зависимости от их массы и характера связи, а также степени связанности их с другими частицами. Это существенно влияет на диэлектрические свойства полимеров. То же относится и к перемещениям или изменениям конформации отдельных звеньев цепей и макромолекулы в целом, причем последние сильно зависят от степени полимеризации и от строения цепей. При повышении степени полимеризации скорость релаксации уменьшается. Еще больше усложняются эти соотнощения в полимерах, содержащих структурные единицы, различные по составу и строению, т. е. в сополимерах, привитых полимерах и пр. В общем существует некоторый комплекс времен релаксации, характеризующий различную скорость релаксации разных форм перемещения частиц в данном полимере. Кроме того, из внешних условий на скорость релаксации существенно влияет давление. При повышении давления увеличивается напряжение и соответственно уменьшается время релаксации. Это широко используется на практике при формовании изделий из полимерных материалов. Время релаксации зависит также от присутствия в полимере других веществ. Так, на введении в полимер специальных пластификаторов основан один из методов увеличения скорости релаксационных процессов. [c.581]

    Структурной единицей в такой системе является кинетический сегмент полимерной цепи. В результате теплового движения в концентрированном растворе сольватированные макромолекулы ассоциируются в лабильные флуктуационные образования (пачки, пучки макромолекул), время жизни которых невелико они постоянно возникают и постоянно разрушаются в результате теплового движения, но благодаря большим молекулярным массам имеют конечные времена жизни (10 - с). Такие пачки сольватированных макромолекул включают в себя статистически организованные участки взаимоупорядоченных сегментов полимерных цепей (домены), аналогично тому, как это имеет место в твердом состоянии полимеров. Между собой эти пачки контактируют как в результате включения проходных цепей, так и за счет поверхностных контактов. При плавном приложении к концентрированному раствору или расплаву полимера сдвигового усилия происходит частичное разрущение наиболее слабых межструктурных связей. Однако время, необходимое для восстановления частично разрушенной структуры (время релаксации), оказывается соизмеримым со временем деформирования системы, и это предопределяет проявление процесса деформации как течения высоковязкой жидкости гю (см. рис. 4.2). При больших напряжениях сдвига т происходят разукрупнение флуктуационных элементов структуры (ассоциатов, пачек сольватированных молекул), частичный распад их, а также ориентация структурных элементов в потоке. Это проявляется в возникновении на реограмме переходной зоны AZB (см. рис. 4.2), обусловленной снижением Лэф при возрастании т. При достаточно больших х происходят разрушение всех лабильных надмолекулярных образований в растворе или расплаве, а также максимальное распрямление и ориентация полимерных цепей в сдвиговом поле. Среднестатистические размеры кине- [c.173]

    Любая система не может изменить свою статистическую сумму мгновенно. Но если поправки к выводимым из статистической суммы характеристикам системы (энтропии, энергии Гиббса и т. д.), обусловленные этой немгновенностью, обычно пренебрежимо малы, то в случае полимеров из-за огромных времен структурной релаксации (часто превышающих Ю Чо) такое пренебрежение недопустимо. Несоответствие длительности воздействия на систему времени структурной релаксации неминуемо приведет к тому, что тривиальную формулу изменения энергии Гиббса в условиях р = onst [c.14]

    В полимерах кинетическими единицами являются сегменты, молекулярная масса (и размеры) которых Ьбычно на два порядка больше, чем у простых жидкостей в преде]1ах одной цепи сегменты объединены в кооперативную систему движения сегментов в соседних цепях также скоррелированы. Вместе с другими особенностями строения полимеров это приводит к значительно большим величинам времен релаксации. Так, эластомеры при 20 °С характеризуются значениями т=10- —10 с. С понижением температуры т возрастает вплоть до значения 10 с при стандартной температуре структурного стеклования. Поэтому в полимерах динамическая регистрация упругого деформационного состояния практически реализуема-при ультразвуковых частотах при высоких [c.95]

    Температуры структурного стеклования Тс и механического стеклования Тм. с независимы между собой, так как первая определяется скоростью охлаждения, а вторая — временным режимом механического воздействия (периода действия силы 0, частоты упругих колебаний v). Различие между Тс и Гм.с четко наблюдалось, например, при изучении температурной зависимости динамического модуля сдвига G или модуля одноосного сжатия Е. Характерная зависимость lg от температуры для полимера 11риведена на рис. П. 11. Ниже Гс полимер находится в стеклообразном состоянии и температурная зависимость Igf слабо выражена, как и у любого твердого тела вообще. Выше Гс логарифм модуля упругости изменяется с температурой несколько сильнее в связи С тем, что в структурно-жидком состоянии структура полимера изменяется с изменением температуры. При дальнейшем увеличении температуры, когда время релаксации снижается до величин, сравнимых с периодом колебаний, начинает возникать высокоэла-бтичёская деформация. С дальнейшим увеличением температуры амплитуда деформации полимера возрастает до предельного значения, а модуль упругости падает до весьма низкого значения (модуля высокоэластичности). Для полимеров модуль одноосного (жатия в стеклообразном состоянии Ео примерно в 10 —10 раз больше, чем соответствующий модуль Еж в высокоэластическом состоянии. [c.96]

    Кинетическая теория структурного стеклования веществ была предложена Волькенштейном и Птицыным [2.3]. Р1ми рассматривалась простейшая система с одним сортом кинетических единиц (например, сегментов в случае полимеров), которые могут находиться в двух состояниях (т. е. имеется один потенциальный барьер и одно время релаксации). Переход кинетических единиц из одного состояния в другое описывается дифференциальным уравнением первого порядка  [c.38]

    Из упругого состояния полимер можно вновь перевести сначала в высокоэластическое, а затем и в вязкотекучее состояние либо увеличением периода действия силы 0 (или уменьшением частоты), либо уменьшением времени релаксации т, что достигается повышением температуры. Следовательно, природа перехода полимера из высокоэластического деформационного состояния в упругое, как и природа структурного стеклования, молекулярно-кинетическая и определяется теми же процессами молекулярных перегруппировок. Однако переход в упруготвердое состояние не связан с замораживанием структуры и происходит в структурно-жидком состоянии системы, т. е. выше Гс. Таким образом, под стеклованием в силовых полях или механическим стеклованием следует понимать переход полимеров из высокоэластического в упруготвердое состояние, не связанный с их структурным стеклованием. При охлаждении расплава полимера вначале происходит механическое стеклование, а затем и структурное. Учет различия между процессами механического и структурного стеклования позволяет устранить неясность в механизмах стеклования полимеров под действием внешних сил и при их отсутствии. Температуры структурного Гс и механического стеклования Гм независимы между собой, так как первая зависит от скорости охлаждения, а вторая —от времени действия силы 0 или частоты упругих колебаний V. [c.43]

    Вязкоэластическая деформация, проявляющая при вязком течении полимеров, влияет на их реологическое поведение. Роль вы-сокоэластической составляющей вязкого течения очень существенна в неустановившейся стадии течения полимера, а также при возникновении нормальных напряжений. Высокая эластичность полимеров в текучем состоянии связана с наличием надмолекулярных структур, которые при деформировании претерпевают разрушение. Так как надмолекулярные структуры затрудняют развитие деформации, после ее разрушения в полимерах начинают протекать процессы структурной релаксации, по завершении которых достигается установившееся течение [8 6.7]. [c.165]

    Таким образом, основные параметры, опоеделяющие структурно-механические свойства полимерных материалов (модуль эластичности, пластическая вязкость, время релаксации и другие параметры), являются функциями строения полимеров. Изучив [c.310]

    Таким образом, основные параметры, определяющие структурно-механические свойства полимерных материалов (модуль эластичности, пластическая вязкость, время релаксации и другие параметры), являются функциями строения полимеров. Изучив природу этой связи, химик, подобно архитектору, может в настоящее время, скрепляя или раздвигая цепи, вводя полярные группы, заместители больщих размеров и т. д., создавать новые материалы с требуемыми свойствами, заранее заданными, сообразно с целью их практического применения. Это — основная задача фиэико-хи мической механики полимеров. [c.298]


Смотреть страницы где упоминается термин Релаксация полимеров структурная: [c.66]    [c.242]    [c.313]    [c.277]    [c.101]    [c.48]    [c.240]    [c.240]    [c.57]    [c.26]    [c.126]   
Физика полимеров (1990) -- [ c.227 ]




ПОИСК







© 2024 chem21.info Реклама на сайте