Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ниобий, тантал и их соединения

    Элементы ванадий, ниобий, тантал способны давать соединения, в которых проявляют положительную валентность 2, 3, 4 и 5. Наиболее устойчивы и характерны их соединения с максимальной валентностью. Таковы, например, оксиды типа Ме Од. Они проявляют амфотерные свойства с преобладающим кислым характером, снижающимся в соответствии с ростом порядкового номера в направлении V -> Nb -> Та. [c.308]


    В настоящее время хлорная металлургия применяется для производства титаиа, ниобия, тантала, циркония, гафния, редкоземельных элементов, германия, кремния, олова и даже алюминия. Она является эффективной при переработке не только многокомпонентных руд, но и промышленных отходов, содержащих ценные элементы, металлолома, отработанных тепловыделяющих элементов ядерных реакторов и т. п. Она нашла широкое применение в металлургии редких металлов. Преимуществами хлорной металлургии по сравнению с традиционными способами извлечения металлов из руд являются полнота вскрытия сырья (полнота извлечения из него ценных элементов), а также высокая избирательность. Метод требует совершенной технологии и высокой культуры производства, поскольку хлор и его летучие соединения очень токсичны и химически агрессивны. [c.171]

    Ванадий, ниобий, тантал распространены в природе исключительно в виде соединений. Содержание их в земной коре V 1,5 10" масс. %, ЫЬ 2,4 10" масс. % и Та 2,1 10" масс. %. Минералы с большим содержанием этих элементов встречаются сравнительно редко Важным промышленным сырьем для получения ванадия являются тита-номагнетитоБые железные руды (содержание ванадия в них до 1%) и осадочные железные руды (V до 0,1 %). Ниобий и тантал почти всегда встречаются вместе. Наиболее важные их минералы — колумбит и танталит — представляют собой изоморфные смеси ниобатов и танта-латов железа и марганца (РеМп)(ТаОд)2 и (РеМп)(ЫЬОз)г. [c.136]

    Свойства ниобия, тантала и их соединений. Ниобий и тантал — элементы V группы Периодической системы Д. И. Менделеева, очень сходные между собой по химическим свойствам, что объясняется близкими радиусами атомов (соответственно 0,145 и 0,147 нм), равными радиусами ионов (0,069 нм для N5 + и Та +). Существуют и некоторые различия свойств элементов ниобий химически более активен, сравнительно легче восстанавливается в водных растворах и др. Это объясняется структурой электронных оболочек атомов. Электронная конфигурация [c.147]

    Из элементов подгруппы ванадий —ниобий —тантал наибольшее практическое значение имеет ванадий и его соединения. Максимальная положительная валентность этих элементов, равная 5, обусловливается потерей атомами этих элементов пяти валентных электронов. В атомах ванадия и тантала на внешнем слое находится 2 электрона, в слое, соседнем с внешним, (8+3) электронов, а в атоме ниобия, соответственно 1 и (8+4) электронов. [c.253]


    Все соединения ванадия токсичны. Ванадий, ниобий, тантал широко используются в металловедении ванадий как легирующая добавка к стали, повышающая ее пластичность и устойчивость к истиранию использование ниобия связано с его сверхпроводимостью. Ниобий и тантал применяются также в качеств материалов для сверхзвуковых самолетов и ракет, танталовая проволока внедряется в современной хирургии. Карбид ниобия наряду с карбидами вольфрама, хрома и других переходных металлов служит для получения жаростойких сверхтвердых сплавов. Соединения ванадия применяются в качестве катализаторов. [c.520]

    Аналогичную формулу можно записать для спектральных линий ионов. Предполагается, что соединение определяемого элемента полностью диссоциировано. В действительности в дуговом разряде постоянного тока для многих элементов (титана, циркония, гафния, ниобия, тантала, ванадия, кремния, алюминия) степень атомизации может быть меньше единицы. На рис. [c.41]

    С плавление с едким натром. Способ заключается в переводе соединений ниобия и тантала в не растворимые в воде ниобат натрия и танталат натрия. Одновременно образуются вольфрамат, станнат, силикат и алюминат натрия. Их удаляют водным выщелачиванием.Также образуются Ре (ОН)а и Мп (0Н)2. Вместе с не растворимыми в воде ниобатом, танталатом и титанатом натрия они остаются в остатке от выщелачивания. При обработке остатка соляной кислотой железо и марганец переходят в раствор в нерастворившейся части остаются гидроокиси ниобия, тантала и титана. [c.66]

    Вышли первые пять томов восьмитомного справочника по термодинамическим свойствам соединений цветных металлов Я. И. Герасимова, А. Н. Крестовникова и А. С. Шахова . В отличие от названных выше изданий в нем приводятся не избранные, а все данные, имеющиеся в литературе, о термодинамических свойствах этих веществ и различных реакций, в которых они принимают участие. Вышедшие тома охватывают соединения цинка, меди, свинца, олова, серебра, вольфрама, молибдена, титана, циркония, ниобия, тантала, алюминия, сурьмы, магния, никеля, висмута, кад.мия, ванадия, ртути и бериллия. [c.78]

    Многие Э. X. (гл. обр. металлы) первоначально стали известны в виде соед. (преим. оксидов) и получены в свободном виде много лет спустя, что было связано с трудностями хим. восстановления этих металлов из их соединений. В составе животных и растительных организмов обнаружено более 70 Э. X. Подавляющее большинство Э. х. находит то или иное практич. применение. Нек-рые элементы, считавшиеся ранее бесперспективными, теперь играют исключительно важную роль как материалы новой техники (напр., бериллий, титан, цирконий, галлий, германий, ниобий, тантал, рений). [c.473]

    Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии рассмотрены важнеЯшне области применения, рудное сырье и его обогащение, получение соединений элементов из концентратов и отходов производства, современные методы разделения и очистки элементов. [c.2]

    Щелочные и щелочноземельные металлы дают при нагревании в атмосфере водорода соединения тина МеН и МеНд. Реакции протекают с выделением теплоты. Некоторые металлы образуют гидриды не совсем определенного состава, так называемые псевдогидриды. К ним относятся соединения титана, циркония, ванадия, ниобия, тантала, вольфрама, церия, лантана и т. д. [c.15]

    При промышленном получении хлора и щелочей методом электролиза хлоридов, переработке руд титана, ниобия, тантала и других металлов методом хлорирующего обжига, получения хлористоводородной кислоты и многих хлорорганических соединений в атмосферу выбрасываются газы, содержащие хлор, хлороводород и другие соединения хлора. В последнее время источниками поступления НС1 в окружающую среду стали печи сжигания хлорсодержащих промышленных отходов и бытового мусора, содержащего полимерные материалы. [c.233]

    К специальным методам можно отнести метод рекристаллизации с попеременным чередованием механической деформации и отжига (до сих пор этот метод применялся для некоторых металлов, полупроводников и оксидов), а также метод выращивания, по которому летучее соединение металла разлагают на сильно нагретой проволоке, что ведет к осаждению соответствующего металла (или неметалла). Этот метод, называемый также процессом ван Аркеля и де Бура [20, 21], служит для получения некоторых металлов, которые другим путем в столь чистом состоянии получить нельзя (титан, цирконий, гафний, ниобий, тантал и др., см. также выше реакции в парах). [c.136]

    Титан почти или совершенно не взаимодействует со щелочными, щелочноземельными и редкоземельными (кроме скандия) металлами, т. е. не образует с ними ни соединений, ни твердых растворов, С остальными металлами титан взаимодействует, однако характер этого взаимодействия с разными металлами различен металлы, яьл.чющиеся аналогами титана и ближайшими его соседями по периодической системе, а именно цирконий, гафний, скандии, ванадий, ниобий, тантал, а также молибден и вольфрам, не образуют с титаном соединений, [го образуют непрерывные ряды твердых растворов другие металлы дают с титаном интерметалличе-ские соединения и ограниченные твердые растворы. [c.263]


    Вышли следующие тома т. 1, 1956 (общие сведения, воздух, вода, водород, дей-теряй, тритий, гелий и инертные газы, радон) т. 3, 1957 (главная подгруппа I группы, побочная подгруппа I группы) т. 4, 1958 (бериллий, магний, кальсий, стронций, барий) т. 7, 1959 (скандий — иттрий, редкие земли) т. 10. 1956 (азот, фосфор) т. И, 1958 (мышьяк, сурьма, висмут) т. 12, 1958 (ванадий, ниобий, тантал, протактиний) т. 14, 1959 (хром, молибден, вольфрам) т. 15, 1960 (уран и трансурановые элементы) т. 16. 19(Ю (фтор, хлор, бром, марганец) т. 18, 1959 (комплексные соединения железа, кобальта. никеля) т. 19, 1958 (рутений, осмнй, родий, иридий, палладий, платина). [c.127]

    Особую склонность к образованию подобных соединений гроявляют ниобий, тантал, молибден, вольфрам и рений. Как правило, эти элементы образуют соединения, в которых атомы [c.615]

    Комплексные фториды известны для большинства высокозарядных ионов этой группы, а в некоторых случаях играют важную роль в технологии (при разделении ниобия и тантала в виде соединений КаЕТаР ] и K2[NbOp5J, при электролитическом получении А1 из расплавов криолита К аз[А1Рб] и т. д.). Такие металлы, как титан, ниобий, тантал, хорошо сопротивляются действию кислот. Однако их можно растворить в смеси азотной и плавиковой кислот, причем первая играет роль окислителя, а вторая — комплексообразователя. [c.83]

    Комплексные фториды известны для большинства высокозарядных ионов этой группы, а в некоторых случаях (при разделении ниобия и тантала в виде соединений КгТаР и КаНЬОРз и т. д.) играют важную роль в технологии. Известно, что такие металлы, как титан, ниобий, тантал, хорошо сопротивляются действию кислот. Однако их можно растворить в смеси азотной и плавиковой кислот, [c.62]

    Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам. [c.198]

    Метод получения гидридов реакцией галоидных солей с реактивом Гриньяра впервые был предложен в 1923 г. В. Шлепком и Т. Вейх-сельфельдером [1] для получения гидрида никеля и впоследствии широко использовался для получения гидридов ниобия, тантала, хрома, вольфрама, никеля, кобальта, железа и других металлов. В процессе реакции исследователи изучали соотношение реагентов, температуру реакции, времена выдержки, способы проведения реакции и получили массу водородсодержащих соединений, состав которых не воспроизводился в опытах и отделить которые от растворителя практически не удавалось. На примере получения гидридов железа можно проследить историю развития этого метода. [c.96]

    Разделение избирательным восстановлением соединений ниобия. Соединения ниобия в химическом отношении менее прочны, чем аналогичные соединения тантала, что положено в основу ряда методов разделения этих элементов. Так, ЫЬгОд в смеси с ТагОб можно селективно восстановить при 900° водородом до ЫЬОг- Последующим хлорированием окислов хлором при 400—600° получают пентахлорид ниобия. Тантал в остатке. Извлечение ниобия после пятикратной переработки вос- [c.84]

    Техника безопасности в технологии ниобия и тантала. Ниобий, тантал и их соединения не обладают токсичностью случаи профессиональ- [c.88]

    Титрование Мп(П) раствором перманганата калия до Мп(П1) наиболее удобно проводить при потенциале платинового электрода -f-0,4 в (отн. МИЭ) [154, 594, 595, 661, 1022]. При этом полностью исключается как анодный ток окисления Mn(II), так и катодный ток, образующ ийся при титровании Мл(П1). Кривые титрования получаются отчетливыми. Ионы Fe(III), Al(III), Ti(IV), a(II), Mg(II), Ni(II), o(II) в присутствии пирофосфата не мешают титрованию, так как образуют с пирофосфатом натрия комплексные соединения, не окисляюш иеся КМПО4 при указанном значении потенциала. Сг(П1) дает комплексное соединение с пирофосфатом натрия, состав и прочность которого изменяются во времени и поэтому в его присутствии необходимо выдержать раствор 15— 20 мин. перед титрованием. Восстановители должны отсутствовать. Обычно титрование проводят с одним или двумя платиновыми индикаторными электродами. Использование амперометрической установки с двумя индикаторными электродами обеспечивает резкое возрастание величины тока вблизи точки эквивалентности, что позволяет заканчивать определение без построения графиков. Амперометрическое титрование Ми(II) по катодной волне перманганата с применением медного и графитового электродов дает удовлетворительные результаты. Недостаток графитового электрода — довольно медленное установление величины тока. Медные и молибденовые электроды не пригодны для проведения анодных процессов на фоне раствора пирофосфата натрия. Ниобий-танта-ловый электрод не может служить индикаторным электродом при амперометрическом титровании перманганатом [153]. Были применены серебряные и другие электроды [1006, 1489]. Титрованием Мп(П) перманганатом калия до Мп(1П) определяют марганец в стали, чугуне [661, 1084, 1489] и цинковых электролитах [154]. [c.50]

    В книге коллектива автороп in ФРГ, представляющей, по существу, энциклопедию неорганического синтеза, приведены методики получения более 3000 препаратов. Книга выходит в 6-ти томах. 5-й том содержит описание синтезов соединений ванадия, ниобия, тантала, хрома, молибдена, вольфрама, марганца, технеция, рения, железа, кобальта, никеля и платиновых металлов и представляет собой перевод гл. 23—30 3-го тома оригинального и.здания. [c.1508]

    Осадители. В качестве осадителей для разделения н выделения отдельных компонентов анализируемых смесей применяют разнообразные химические соединения. Главнейшими из них являются сероводород, осаждающий в виде сульфидов ионы V, IV и частично III аналитических групп (см. Книга I, Качественный анализ, гл. VI—VIII), а также разлагающий при опред еленных значениях pH анионы АзОз , АзО , VOз, М0О4 , 04 и др. (см. Книга I, Качественный анализ, гл. XII) водный раствор аммиака, осаждающий катионы бериллия, железа (III), алюминия, таллия, галлия, индия, ниобия, тантала, урана, редкоземельных металлов и др. фосфаты щелочных металлов и аммония ацетат натрия едкие щелочи сульфид аммония и т. д. [c.354]

    Особый интерес в этом отношении представляют карбиды, нитриды, бориды и силициды металлов. Составы этих соединений могут изменяться в значительном интервале, что позволяет рассматривать их как твердые растворы. При испарении их при низком давлении состав образующейся газовой фазы, как правило, отличается от состава твердой фазы и соотношение компонентов в последней в процессе испарения изменяется. Было отмечено, однако, что в ряде случаев состав твердой фазы стремится к некоторому постоянному значению. Такое положение было обнаружено, в частности, при изучении испарения монокарбидов ниобия, тантила и вольфрама [100—102]. Состав твердой фазы, испаряющейся без изменения состава и названной конгруэнтно испаряющимся раствором, является только функцией температуры, с повышением которой возрастает содержание металла. Р. Г. Аварбэ и С. С. Никольский предложили использовать явление образования конгруэнтно испаряющегося раствора для расчета условий фазового равновесия в бинарной системе тина твердое тело — газ [103]. Как известно, скорость испарения вещества с открытой поверхности в вакуум выражается уравнением Лэнгмюра  [c.263]

    Основные научные исследования относятся к неорганической химии. Исследовал соединения ниобия, тантала, молибдена, вольфрама, особенно их галогениды и оксига-логениды. Получил (1866) ниобий восстановлением его хлорида водородом. Открыл (1888) геометрическую изомерию некоторых неорганических комплексов, установив, что комплексные соединения [Pt(R2S)5] l2, где R —органический радикал, могут существовать в виде двух изомеров — цис и транс. Провел анализ многих минералов, в частности монацита, ильменита, танталита, ниобита, эук-сенита. Вслед за А. М. Бутлеровым выступил в поддержку представления о переменной валентности элементов, объяснив ее полтям и неполным использованием единиц сродства. [22, 23, 324, 336] [c.61]

    Основные научные исследования посвящены неорганической химии и физической химии редких и радиоактивных элементов, комплексных соединений. Его ранние работы в области химии молибдена и вольфрама, в частности по изучению состава изополивольфраматов и реакций их восстановления, получению химически чистого молиб-дата аммония и др., были использованы в 1920-х при организации отечественного производства вольфрама и молибдена. Результаты работ по хлорированию окислов бери.илия, ниобия, тантала и других элементов (1928—1934) нашли применение при организации производства этих металлов. Осуществил (с 1938) цикл работ по химии цезия и рубидия, по изучению (с 1945) гетерополисоединений нептуния и плутония, по исследованию (с 1953) технеция и других компонентов радиоактивных отходов атомной промышленности. Исходя из представлений о водородной связи, предложил (1957) [c.475]

    КИСЛОТОСТОЙКИЕ МАТЕРИАЛЫ — материалы, отличающиеся повышенной кислотостойкостью, вид химически стойких материалов. В пром. масштабах используются с середины 18 в. Различают К. м. металлические и неметаллические. К металлическим К. м. относятся сплавы на основе железа, а также цветные металлы и их сплавы (см. также Кислотостойкие сплавы). Кислотостойкие сплавы на основе железа углеродистые стам (нелегированные, низколегированные), содержащие до 1% С высоколегированные стали, имеющие в своем составе хром, никель, медь, марганец, титан и др. хим. элементы чугуны (нелегированные, высоколегированные), содержащие более 2,5—2,8% С. Кислотостойкие цветные металлы никель, медь, алюминий, титан, цирконий, олово, свинец, серебро, ниобий, тантал, золото, платина и др. Углеродистые стали стойки в растворах холодной азотной к-ты (концентрация 80—95%), серной к-ты (выше 65%) до т-ры 80° С, в плавиковой к-те (выше 65%), а также в смесях азотной и серной к-т. На углеродистые стали сильно действуют органические к-ты (адипиновая, муравьиная, карболовая, уксусная, щавелевая), особенно с повышением их т-ры. Высоколегированные стали, отличаясь повышенной стойкостью к коррозии металлов (см. также Коррозионностойкие материалы), являются в то же время кислотостойкими. Большинство легирующих добавок значительно повышают кислотостойкость сталей. Так, медь придает хромоникелевым сталям повышенную стойкость к серной к-те. Сталь с 17—19% Сг, 8-10% Мп, 0,75-1% Си, 0,1% С и 0,2—0,5% Si стойка в азотной к-те (любой концентрации и т-ры вплоть до т-ры кипения) и многих др. хим. соединениях (см. Кислотостойкая сталь). Кислотостойки высоколегированные чугуны никелевые, хромистые (см. Хромистый чугун), алюминиевые (см. Чугалъ), высококремнистые (ферросилиды), хромоникель-медистые (см. Нирезист), хромони-келькремнистые (никросилал). Наиболее распространены ферросилиды [c.586]


Библиография для Ниобий, тантал и их соединения: [c.176]   
Смотреть страницы где упоминается термин Ниобий, тантал и их соединения: [c.514]    [c.122]    [c.53]    [c.497]    [c.487]    [c.375]    [c.16]    [c.139]    [c.4]    [c.337]    [c.36]    [c.174]    [c.337]    [c.339]    [c.276]    [c.128]    [c.150]    [c.65]   
Смотреть главы в:

Неорганическая химия -> Ниобий, тантал и их соединения




ПОИСК





Смотрите так же термины и статьи:

Ниобий и его соединения

Ниобий тантале

Тантал



© 2025 chem21.info Реклама на сайте