Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Валентность химических элементов и структурные формулы

    Изучая окислительно-восстановительные процессы, следует различать понятия валентность и степень окисления . Под валентностью элемента мы будем понимать способность его атомов образовывать химические связи без учета характера этих связей. Следовательно, количественно валентность равна числу связей без знака плюс или минус. Степень же окисления, как сказано выше, может иметь положительное, нулевое и отрицательное значение. Часто степень окисления элемента не совпадает с числом образуемых им связей, или, иными словами, не соответствует валентности данного элемента. Например, в молекуле СЬ степень окисления атомов равна нулю, а с точки зрения спиновой теории валентности каждый атом хлора одновалентен. В метане СН4, метиловом спирте СН3ОН, формальдегиде СН2О, муравьиной кислоте НСООН и двуокиси углерода СО2 степени окисления углерода соответственно равны —4, —2, О, +2, 4-4, тогда как валентность его во всех этих веществах четыре. Для наглядности приведем их структурные формулы  [c.46]


    Химический эквивалент. Закон эквивалентов. Эквивалент элементов. Соотношение между эквивалентом, валентностью и атомным весом элемента. Структурная формула и нахождение по ней валентности и эквивалента отдельного элемента, входящего в данную молекулу. Эквивалент окисла, кислоты, основания и соли. Электрохимический эквивалент. Понятие об окислительно-восстановительном эквиваленте. Ионная и атомная связь. Расчетные и экспериментальные методы определения эквивалентов. [c.46]

    Приведите структурные формулы 4-нитрофенола и гидросульфата аммония. Укажите характер химических связей в каждом из соединений, валентности и степени окисления элементов. [c.39]

    Развитие начинается с вида атомов, у которых в электронной оболочке содержится минимум электронов и, естественно, такое же число протонов в ядре, т. е. Ер" = Ее = 0. Его местом на оси абсцисс является начало координат. На оси А при этом может быть несколько значений, так как она слагается из суммы А = Ер" + EN и при Ер" = О, А = ЕК. При ЕК = 1, А = 1 и т. д. Это ни что иное, как нейтрон — одна из структурных единиц ядра, лежащая в основе эволюции атомов. С него и начинается ряд химических элементов. Определение понятия химического элемента позволяет вполне законно считать нейтрон химическим элементом (видом атомов), предшествующим водороду, общей формулы оЭо. Далее логика построения системы проста. Если заполнение электронами квантового подслоя рассматривать как цикл, а цикл графически — круг, то фаза заполнения квантового подслоя идентифицируется с частью круга. Таким образом, полярный угол моделирует фазу заполнения электронного подслоя, наименьшей мерой которого является один электрон, он определяет еще и валентную группу. [c.157]

    Структурные формулы служат для более наглядного изображения химического соединения. При таком изображении символы элементов соединены черточками, изображающими связующие электронные пары. Количество черточек у каждого элемента равно его валентности в данном соединении [c.28]

    Химическая формула этана — СаНб. Обозначив валентность элементов валентными штрихами, изобразим молекулу этана в порядке соединения атомов, т. е. напишем ёе структурную формулу. В соответствии с теорией А. М. Бутлерова она будет иметь следующий вид  [c.289]

    Атомы элементов в структурных формулах обозначают их обычными химическими символами, а валентность атомов и связи между ними — черточками каждая такая черточка отвечает единице валентности атома. В соответствии с ранее установленным положением в теории строения принято, что углерод, как правило, четырехвалентен, причем все его валентные связи равноценны. Это изображается следующим образом  [c.20]


    Понять физический смысл валентности и структурных формул помогает учение о строении атома и химической связи. Атомы элементов способны отдавать, присоединять электроны или образовывать общие электронные пары. Электроны, которые участвуют в образовании химических связей между атомами, называют валентными. Это наиболее слабо связанные в атоме электроны. [c.107]

    Для изображения молекул органических соединений пользуются формулами строения, или структурными формулами, которые отражают порядок, последовательность соединения атомов в молекуле. В этих формулах символы (обозначения) элементов соединяют черточками. Каждая черточка означает химическую связь между атомами, а количество черточек соответствует их валентности. Атомы многовалентных элементов затрачивают на образование связей одну или несколько единиц валентности. Например, в органических веществах углерод, как правило, четырехвалентен. При соединении двух атомов углерода могут быть использованы одна, две и три валентности каждого из них. В зависимости от этого различают простую (или ординарную), двойную и тройную связи двойную и тройную связи называют часто кратными  [c.15]

    Структура молекулы изображается структурной формулой. Так, например, структура молекулы воды изображается формулой Н —О—Н. Каждый атом кислорода связан с двумя атомами водорода, сами же атомы водорода друг с другом непосредственно не связаны. Структурная формула едкого натра Na — U — Н показывает, чти атом натрия в этой молекуле связан с атомом кислорода, а этот последний с атомом водорода непосредственной же связи между атомами натрия и водорода нет. Таким образом, структурные формулы отображают, в какой последовательности связаны между собой атомы в молекуле, но не расположение атомов в пространстве. Судя по структурной формуле воды, нельзя сказать, лежат ли все три атома в одной плоскости и на одной прямой или нет, находятся ли атомы водорода на одинаковом расстоянии от атома кислорода или один расположен поближе, а другой — подальше от кислорода и т. п. Для того чтобы найти структурную формулу соединения, недостаточно знать молекулярную формулу и валентности элементов, входящих в его состав необходимо, кроме того, тщательно и всесторонне изучить химические свойства вещества и пути его образования. [c.11]

    Структурные формулы можно рассматривать как обобщение валовых формул. Символика структурной химии кроме знаков химических элементов и цифр включает также так называемые валентные штрихи, выражающие химическую связь между атомами. При этом вводятся различные символы для различных типов связей один штрих (—) одинарная связь, два штриха ( = ) — двойная связь, три штриха (=) — тройная связь. [c.43]

    Последовательность связи атомов в молекуле стали выражать особыми структурными формулами. Для обозначения химических связей в структурных формулах служат черточки, число которых равно валентности элемента, например  [c.54]

    В структурных формулах единицу валентности принято изображать черточкой. Черточка приставляется к химическому знаку элемента, например  [c.24]

    Пользуясь этими обозначениями, можно представить соединение формулой, условно изображающей связь атомов в молекуле. Такие формулы называются формулами строения, или структурными формулами. Чтобы написать структурную формулу бинарного соединения (т. е. состоя- щего из двух элементов), нужно определить валентность элементов, входящих в состав соединения, записать химические знаки атомов, обладающих наибольшей валентностью, с соответствующим количеством черточек и присоединить к ним черточками же знаки атомов с меньшей валентностью. В этом виде одна черточка будет соответствовать единице валентности каждого из двух связанных атомов. [c.58]

    Состав молекул часто изображается так называемыми структурными формулами. В этих формулах связи между атомами изображаются черточками. От химического знака каждого элемента отводят столько черточек, сколько единиц валентности имеет данный элемент, например, от Na — одну черточку, [c.37]

    Таким образом, вопрос о взаимоотношении между квантовой химией и химиками-экспериментаторами естественным образом перешел в методологическую плоскость и превратился в вопрос о реальности представлений квантовой химии или, но сути, в вопрос о природе ее теоретических моделей — являются ли они структурными (изоморфными оригиналу — изучаемому объекту микромира) или они функциональные, или смешанные и если последнее правильно, то в чем заключается их структурность. В чем заключается реальность квантовой химии — этот вопрос задавал и Коулсон [122, с. 172]. Ответ на этот вопрос можно, но-видимому, сформулировать так квантовая химия представляет собою совокупность моделей (см. обзор [124]) с определенной иерархией, от фундаментальных (уравнения Шредингера и правила заполнения орбиталей на основании принципа Паули) до моделей частного характера, к которым принадлежит, например, модель Хюккеля. Большинство моделей квантовой химии органических соединений смешанные, поскольку сочетание чисто квантовомеханических моделей с моделями химического строения и стереохимии придает им элемент структурности (изоморфности), хотя чисто формальное сочетание квантовохимических представлений со структурными формулами, как в модели суперпозиции валентных схем в теории резонанса, не выводит модель из разряда функциональных [125]. [c.98]


    Формулы строения, или структурные формулы, показывают последовательность соединения в молекуле атомов элементов между собой в соответствии с их валентностью и химической природой (химическими свойствами). В структурных формулах связь между атомами условно изображают черточками. Число черточек соответствует валентности элемента. Так, простейшие органические соеди- [c.9]

    Выводы ТВС хорошо согласуются с экспериментально выясненными свойствами молекул, структура которых позволяет электронную плотность связывающих электронных пар считать локализованной между парами атомов. К таким молекулам относятся все двухатомные молекулы с четным числом электронов (На, Сг, N2, Fa, ВеО, MgO и пр.) и множество других молекул (НаО, NH3, молекулы предельных и непредельных углеводородов и др.). Для этих молекул описание с точки зрения ТВС, во всяком случае в химии, предпочтительнее. Оно позволяет пользоваться удобным в химии понятием о валентности элементов и прочно вошедшими в химический обиход бутлеровскими структурными формулами. [c.195]

    Для систематизации химии органических соединений фосфора представляется целесообразным прибегнуть к помощи тех аналогий и различий, которые можно установить между этой ветвью химии и химией углеводородов. Так как углерод является элементом 2-го ряда периодической системы химических элементов, химические связи его могут возникать лишь за счет использования 5- и р-орбиталей. Вследствие этого атом углерода может образовать только четыре р-связи, соответствующие 5р -гибриду. Для того чтобы образовались л-связи, должно уменьшиться координационное число (по сравнению с координационным числом атома углерода, связанного с-связями), что означает переход в состояние зр - или зр-гиб-ридизации. Для изображения упомянутых состояний пишут обычные структурные формулы с ординарными, двойными и тройными связями у атома углерода. Другая характерная особенность соединений углерода обусловлена тем, что атом углерода обладает четырьмя электронами в валентной оболочке. Следовательно, о-связи образуются парами электронов, отданных по одному каждым атомом, соединенны.м связью. [c.55]

    Для изображения молекул органических соединений пользуются формулами строения, или структурными формулами, которые отражают порядок, последовательность соединения атомов в молекуле. Для написания структурной формулы любого органического соединения используют четыре основных свойства углерода. 1) четырехвалентность, 2) способность его атомов соединяться в цепи, 3) способность образовывать двойные и тройные связи и 4) способность образовывать циклы. В этих формулах символы (обозначения) элементов соединяют черточками. Каждая черточка означает химическую связь между атомами, а количество черточек соответствует их валентности. Атомы многовалентных элементов затрачивают на образование связей одну или несколько единиц валентности. При соединении двух атомов углерода могут быть использованы одна, две и три валентности каждого из них. В зависимости от этого- различают простую (или ординарную), двойную и тройную связи двойную и тройную связи называют часто кратными  [c.14]

    При установлении любой структурной формулы необходимо исходить из хорошо известного свойства элементов образовывать химическую связь с вполне определенным числом атомов других элементов. Это свойство обычно выражают тем, что приписывают данному элементу одну или несколько определенных валентностей. Так, например, водород, как известно, одновалентен, кислород в большинстве случаев двухвалентен (в оксониевых солях он может иметь, как мы увидим на стр. 151 другую валентность), азот — трех- и пятивалентен (или же координационно четырехвалентен) и т. п. В органической химии особо важную роль играет валентность углерода, который почти всегда бывает четырехвалентным, как видно, например, из существования простейших углеродных соединений СНь СС ь СОо, СЗг и т. п. Не четы-рехвалеитным углерод является лишь в очень немногих соединениях, обладаюиа,их специфическим строением, чрезвычайно ненасыщенным характером и часто неустойчивостью. С ними мы встретимся позднее в других главах этой книги. Исключением является окись углерода СО, известная уже из неорганической химии. [c.14]

    Теории валентности и стереохимия развивались в прошлом столетии в очень тесной связи, так что достижения одной обычно были результатом успехов другой. В 1852 г. Фрэнкленд предложил концепцию валентности и показал, что элементы при образовании соединений реагируют с определенными количествами других элементов, и эти количества теперь называют эктшвалентными. Кекуле в 1858 г. и Кольбе в 1859 г. расширили представление о валентности и постулировали, что атом углерода четырехвалентен. В 1858 г. Кекуле предположил, что атомы углерода соединяются друг с другом в неограниченном числе, образуя цепи в том же году Купер ввел концепцию валентной связи и нарисовал первые структурные формулы. Термин химическое строе-ние ввел в 1861 г. Бутлеров, который отметил важность написания простейших формул соединений, показывающих, как соединены атомы в молекулах. Он также установил, что свойства соединений определяются их молекулярным строением, п если известно строение, то можно предсказать свойства. Однако только в 1874 г. был сделан первый основной шаг к наглядному представлению молекулярного строения в трех измерениях. В этом же году Вант-Гофф и ле Бель независимо друг от друга постулировали тетраэдрическое расположение четырех связей атома углерода и таким образом дали возможность классической органической стереохимии по крайней мере. на двадцать лет опередить неорганическую стереохимию. [c.191]

    Для сопоставления химического подобия однотипных неорганических простых веществ и соединений используют периодическую таблицу элементов Менделеева. Однотипными обычно считают соединения с аналогичной структурной формулой, различающиеся лишь одним элементом, который принадлежит общей подгруппе или ряду элементов периодической системы и имеет характерное одинаковое валентное состояние. Что касается однотипных химических реакций, то к Ним относят две (или более) реакции, в которых каждому компоненту одной реакции соответствует однотипный (химически подобный) компонент другой реакции. Важными общими признаками отнотипности реакций также являются одинаковое агрегатное состояние и одни и те же стехиометрические коэффициенты. [c.25]

    Некоторые элементы имеют нес10льк0 эквивалентов, поэтому они обладают переменной валентностью. Каждой единице валентности отвечает наличие одной химической связи между атомами, которую в структурных формулах изображают черточкой. При образовании молекулы атомы всегда соединяются к таких количествах, что общее число валентностей одного элемента равно числу валентностей другого, что нытекает из закона эквивалентов. Чтобы составить формулу по валентности, надо прежде всего найти наименьшее кратное валентностей соединяющихся, элементов в данном соединении. Частное от деления наименьшего хратного на валент- [c.32]

    Во второй половине XIX в. был сформулирован принцип четырех-валентности углерода, ставший фундаментом органической химии. В таком виде понятие валентности вошло в теорию строения А. М. Бутлерова (1861), согласно которой каждую химическую связь считали направленной и строго локализованной между двумя атомами. Молекулы при этом изображали в виде структурных формул, в которых штрих отождествлял единицу валентности. Периодический закон Д. И. Менделеева расширил понятие валентности, связав его о поло-женпем элементов в группах. Однако с рождением химии комплексных соединений представления о строго определенной валентности атомов оказались недостаточными. [c.263]

    Более детальная классификация главных взаимодействий основана на понятии валентностп атома. Каждому эффективному атому химического элемента сопоставляется символ соответствующего химического элемента и приписывается определенное целое число (валентность), характеризующее способность атома к образованию химических связей. Предполагается, что на образование химической связи каждый партнер использует одинаковое число единиц валентностп. Эта величина называется кратностью связи. Инфор.мацпя об элементном составе молекулы, главных взаимодействиях эффективных атомов, кратностях этих взаимодействий моя ет быть представлена в виде структурной формулы — мульти-графа, в котором вершины соответствуют эффективным атомам, а ребра — связям, причем связям кратпостн п соответствует п ребер. [c.13]

    В химии давно используется метод моделирования. Сама химическая символика, первые формулы соединений (Берцелиуса) практически представляли собой знаковые модели, отражающие состав соединения, стехиометрические отношения между элементами. Появление теории химического строения обусловило возможность создания модели молекулы в виде структурной формулы, выражающей уже и порядок связей атомов. Эти знаковые модели химического строения молекулы позволяют наглядно представлять ее структуру, объяснять некоторые явления (например, изомерии) с точки зрения бутлеровской теории, опирающейся на принцип валентности, насыщаемости н взаимного влияния атомов. Модели химического строения давали возможность предсказывать, строить другие модели в виде структурных формул предполагаемых изомеров (предсказание Бутлеровым триметилкар- [c.313]


Смотреть страницы где упоминается термин Валентность химических элементов и структурные формулы: [c.54]    [c.14]    [c.230]    [c.42]    [c.138]    [c.13]    [c.598]    [c.14]   
Смотреть главы в:

Учебник неорганической химии Издание 2 -> Валентность химических элементов и структурные формулы




ПОИСК





Смотрите так же термины и статьи:

Структурные формулы

Структурный элемент

Формулы химические

Формулы химические структурные

Элемент химический



© 2025 chem21.info Реклама на сайте