Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярная орбиталь представление

    Начиная с 50-х годов, получило развитие новое направление в разработке методов оценки реакционной способности молекул на основе представлений квантовой теории химической связи. Особенностью этого направления являются определение реакционных центров в молекулах исходя из молекулярной структуры и разработка методов оценки относительной реакционной способности молекул. Так, в методе Хюккеля реакционная способность молекул качественно характеризуется индексами реакционной способности плотностью электронного заряда, индексом свободной валентности, энергией делокализации и др. (см. 37). В методе МО ЛКАО была показана особая роль граничных молекулярных орбиталей. В 60-х годах Вудвордом и Хоффманом было сформулировано правило сохранения орбитальной симметрии в синхронно протекающих элементарных химических актах. Все эти положения получили логическое завершение в методе возмущенных молекулярных орбиталей (метод ВМО). [c.583]


    В гетероядерной двухатомной молекуле АВ, где В-более электроотрицательный атом, чем А, связывающая молекулярная орбиталь содержит больший вклад атомной орбитали атома В, а разрыхляющая молекулярная орбиталь больше напоминает атомную орбиталь атома А. Если разность электроотрицательностей атомов А и В очень велика, как, например, в КР, валентные электроны локализуются на более электроотрицательном атоме (в данном случае Р) и представление о ковалентной связывающей орбитали теряет свой смысл. В такой ситуации правильнее говорить об ионной структуре К Р . Большинство гетероядерных двухатомных молекул имеют промежуточный характер связи между ионными парами и ковалентно связанными атомами другими словами, они имеют частично ионный характер связи и могут описываться структурами А В .  [c.544]

    Скорость химической реакции А + + В О + Е будет определяться числом столкновений возбужденных молекул А и В, суммарная энергия которых должна быть выше энергии Е, необходимой для образования переходного состояния. Однако это условие является необходимым, но не достаточным. Для образования переходного состояния кроме избыточной энергии сталкивающихся молекул необходимо благоприятное расположение атомов в реакционных центрах реагирующих молекул. Следовательно, теория элементарного химического акта должна давать возможность расчета высоты энергетического барьера и вероятности образования переходного состояния исходя из строения и свойств реагирующих молекул. Одним из первых направлений в развитии теории элементарных реакций является теория активных столкновений. Ее основы разрабатывались на базе молекулярно-кинетических представлений и идеи, выдвинутой Аррениусом об активных столкновениях, заканчивающихся химическим актом. На современном этапе это направление развивается на базе квантовой теории химической связи и строения молекул. Начало этому было положено работами Эйринга, Эванса, Поляни и др., создавших новое направление в теории элементарных химических реакций, так называемую теорию абсолютных скоростей реакций. В этой теории ставится задача расчета высоты энергетического барьера и вероятности образования переходного состояния исходя из свойств реагирующих молекул. За последние три десятилетия получило развитие новое направление в теории элементарных химических реакций, в котором строение и свойства переходного состояния описываются на базе теории молекулярных орбиталей. [c.562]


    Как известно, в представлениях теории молекулярных орбиталей при взаимодействии двух атомов происходит перекрывание атомных орбиталей с образованием связывающих и разрыхляющих молеку- [c.115]

    Каждый атом В образует две обычные двухцентровые ковалентные связи В—Н, в которых занято всего восемь электронов. Остающиеся у диборана четыре валентных электрона используются для образования двух трехцентровых связей В—Н—В, в которых каждый из трех атомов поставляет по одной орбитали в связывающую молекулярную орбиталь. Представление о трехцентровых связях позволяет объяснить строение всех гидридов бора. Кроме того, оно объясняет, почему бор неспособен к проявлению таких химических свойств, как углерод. [c.272]

    Существует, однако, иной подход к описанию сложных молекул, основанный на использовании локализованных двухатомных молекулярных орбиталей. В данной главе мы уделим внимание главным образом рассмотрению теории локализованных связей, так как она дает простую основу для обсуждения многих свойств молекул в невозбужденном состоянии, особенно геометрического строения молекул. Теория делокализованных молекулярных орбиталей очень удобна для обсуждения я-связывания в молекулах, подобных бензолу, которые при использовании льюисовых представлений требуют для своего описания две или большее число резонансных структур. Поэтому л-связывание в бензоле будет рассмотрено нами как пример применения теории делокализованных молекулярных орбиталей. [c.551]

    Оправдать такие льюисовы структуры О2 может только предположение об их резонансе, т.е. представление об истинной электронной структуре О 2 как о резонансном гибриде двух указанных выше структур с неспаренными электронами. Но такой подход представляется искусственным. Проще вместо льюисовых структур судить об электронном строении двухатомных молекул, пользуясь представлениями о молекулярных орбиталях. [c.529]

    Детальное рассмотрение методов ВС и МО с описанием математических моделей химических связей выходит за пределы настоящего курса. Ограничимся лишь кратким качественным описанием физических моделей химических связей и молекулярных орбиталей, представления о которых будут использоваться ниже для интерпретации строения и реакционной способности органических соединений. [c.26]

    Опишите электронное строение молекулярного иона О , пользуясь представлениями теории молекулярных орбиталей. Каков порядок связи в этой молекулярной частице и сколько в ней неспаренных электронов  [c.530]

    Прежде чем мы перейдем к следующему вопросу, обратим внимание на узловые поверхности молекулярных орбиталей, представленных па рис. 2-12. Отметим, что ии одна из трех связывающих молекулярных орбиталей не имеет узловой поверхности между двумя ядрами. Напротив, каждая разрыхляющая молекулярная орбиталь, показанная на этом рисунке, обладает узловой поверхностью, проходящей между двумя ядрами. [c.36]

    В отношении молекулярных орбиталей представленного на рис. 28-7 типа следует рассмотреть еще одно важное обстоятельство — способ, которым их свойства симметрии могут быть использованы для предсказания переходов, являющихся выгодными или невыгодными с точки зрения правил отбора. В каждой из диаграмм молекулярных орбиталей бутадиена имеется центр симметрии (его наличие определяется формой орбиталей), но волновые функции и ( )з обладают тем дополнительным свойством, что при переходе через центр симметрии они меняют знак. Так, если точка по одну сторону от центра симметрии находится в положительной области волновой функции, то соответствующая точка по другую сторону от центра располагается в отрицательной области] [c.449]

    Рассмотрение молекулярных орбиталей и химической связи во втором издании в общем понравилось большинству преподавателей, но показалось им несколько усложненным и трудным для восприятия. Теперь мы разбили этот материал на две части в гл. 12 излагаются основы теории молекулярных орбиталей и ее применения к некоторым двухатомным молекулам, а в гл. 13 рассматриваются многоатомные молекулы и молекулярная спектроскопия. Кроме того, написана новая глава (гл. 11), представляющая собой введение в теорию химической связи в ней используются только представления об электронных парах и отталкивании электронных пар и еще не упоминается о квантовой механике. Рассматриваемая в этой главе теория отталкивания валентных электронных пар (как это ни странно, мало известная в США) дает интуитивно понятный и простой способ качественного объяснения формы молекул. Эти три главы вместе с гл. 14, посвященной химической связи в кристаллах и жидкостях, дают студентам всестороннее представление о принципах химической связи, строения молекул и спектроскопии. [c.10]

    Разумеется, при решении такой задачи по аналогии с методом Хартри — Фока приходится использовать итерационную процедуру, так как прежде, чем мы сможем построить хартри-фоковский оператор Н, нам необходимо знать вид орбиталей. Поэтому исходят из набора предполагаемых приближений нулевого порядка 115° для молекулярных орбиталей, представленных в виде линейных комбинаций функций базисного набора  [c.97]


    Самый приблизительный уровень образуют качественные представления метода молекулярных орбиталей представление о молекулярной орбитали, полученной соединением атомных орбиталей, представление о корреляции между орбиталями объединенного атома и орбиталями раздельных атомов, представление о связывающих и разрыхляющих орбиталях и т. д. [c.102]

    Для объяснения строения и свойств соединений р-элементов в настоящее время широко применяются представления о двух- и трехцентровых орбиталях. Двухцентровая двухэлектронная связь образуется за счет непарных электронов орбитали центрального атома (А) п орбитали лиганда (Ь). Напомним, что согласно теории МО это отвечает образованию двухцентровых связывающей + = А + Фь И разрыхляющей = молекулярных орбиталей. [c.268]

    При описании строения многоэлектронных атомов мы воспользовались наглядным представлением о функциях вероятности, или орбиталях, как об облачных образованиях, которые мы затем заселяли электронами. Чтобы получить представление о строении молекулы, необходимо найти для заданного расположения атомов набор молекулярных орбиталей и затем заселить эти орбитали имеющимися электронами, помещая, как и раньше, на каждую орбиталь не более двух электронов. Но прежде чем мы поступим указанным образом, посмотрим, что происходит, когда два атома водорода сближаются, образуя молекулу. [c.511]

    Если даже теорема Купманса строго и не выполняется, то все-таки полезно знать, какие пики в фотоэлектронном спектре могут быть связаны с различными молекулярными орбиталями в исходной молекуле. Например, в гл. 3 рассматривались симметрия и строение молекулярных орбиталей NHj. Было установлено, что семь атомных орбита-лей в симметрии Сз . образуют представление, которое сводится к трем неприводимым представлениям и двум неприводимым представлениям е. Восемь валентных электронов NH3 заполняют две из а - и одну из е-молекулярных орбиталей, образуя конфигурацию основного состояния [c.339]

    Что эквивалентно представлению Льюиса о ковалентной связи в теории молекулярных орбиталей  [c.545]

    ВзН см. разд. 13-2). В этой молекуле к центральному атому бора присоединены три атома водорода. Согласно теории локализованных молекулярных орбиталей, связь в этой молекуле осуществляется в результате гибридизации 2х-орбитали и двух 2р-орбиталей атома бора с образованием трех эквивалентных хр -гибридных орбиталей (рис. 13-3). Каждая гибридная орбиталь имеет на одну треть 5-характер и на две трети р-характер. Поскольку любые две р-орбитали лежат в одной плоскости, а х-орбиталь не имеет пространственной направленности, три хр -ги-бридные орбитали лежат в одной плоскости. Эти три хр -гибридные орбитали, перекрываясь с тремя водородными 1х-орбиталями, образуют три эквивалентные локализованные связывающие орбитали. Каждая из таких связывающих (хр -ь 1х)-орбиталей занята в молекуле ВН3 парой электронов, как это схематически показано на рис. 13-4. На основании представления о гибридньгх орбиталях можно предсказать, что молекула ВН3 должна иметь плоскую тригональную структуру. Угол между межъядерными осями Н—В—Н, называемый валентным углом Н—В—Н, должен составлять 120°. [c.553]

    Молекулы типа NH3 или HjO могут быть описаны с использованием представлений о локализованных молекулярных орбиталях. Например, в NH3 имеются три связывающие электронные пары на трех локализованных орбиталях типа sp + Is), а также неподеленная пара электронов на оставшейся гибридной sp -орбитали. [c.595]

    Свойства металлов и ковалентных каркасных кристаллов можно интерпретировать в рамках представлений о делокализованных молекулярных орбиталях, рассматривая весь исследуемый объем вещества как одну гигантскую молекулу . Основанная на таких представлениях зонная теория позволяет объяснить многие наблюдаемые свойства проводников, полупроводников и диэлектриков (изоляторов). [c.640]

    Как теория делокализованных молекулярных орбиталей при объяснении электронного строения металлов приводит к представлению о зонах энергетических уровней  [c.641]

    Метод молекулярных орбиталей, с которым мы познакомились на примере двухатомных молекул, может быть использован также для объяснения свойств многоатомных систем. Общий способ построения молекулярных волновых функций для многоатомных молекул заключается в составлении линейных комбинаций из атомных орбиталей. Электроны на таких молекулярных орбиталях не локализованы между двумя атомами многоатомной молекулы, скорее они делокализованы между несколькими атомами. Эта модель принципиально отличается от представлений Льюиса, согласно которым пара электронов, обобществленых двумя атомами, эквивалентна одной химической связи. [c.551]

    Причина неожиданной неустойчивости молекулы циклопропана заключается в том, что она сильно напряжена. Трехчленный углеродный цикл имеет валентные углы по 60° вместо обычных для углерода тетраэдрических углов 109,5°. Если обратиться к представлениям теории молекулярных орбиталей, можно понять, что перекрывание между гибридными хр -орбиталями атомов углерода в молекуле циклопропана должно быть небольшим, а это означает, что связи оказываются слабыми. В молекуле циклобутана напряжение, или деформация связей, несколько смягчается, а в молекуле циклопентана этот эффект выражен еще меньше. Данные [c.32]

    Вернемся теперь от теории локализованных молекулярных орбиталей, каковой в сущности является теория валентных связей, к чисто электростатической теории, в рамках которой химическая связь между металлом и лигандами считается ионной. Простая электростатическая теория предсказывает образование октаэдрической координации по той же причине, по которой шесть единичных зарядов, вынужденные двигаться по поверхности сферы, принимают октаэдрическое расположение, продиктованное требованием минимальной энергии. Здесь мы, в сущности, имеем дело с уже известными нам из разд. 11-3 представлениями об отталкивании электронных пар. [c.228]

    Лучший способ познакомить с молекулярными орбиталями студентов-первокурсников-извлечь как можно больше пользы из их предшествующей работы по изучению атомных орбиталей. Следует показать, что к молекулам в той же мере, что и к атомам, применимы представления об использовании волновых функций для описания движения электронов, [c.576]

    В первой главе мы уже рассмотрели понятие о молекулярных орбиталях и спин-орбиталях в связи с обсуждением одноэлектронного приближения и метода ССП (метода Хартри — Фока). Здесь мы остановимся на теории МО более детально. Начнем с вопроса о способе представления молекулярных орбиталей. [c.175]

    Проблема гетерогенно-каталитического акта является проблемой химического взаимодействия между реагирующими молекулами и взаимодействия их с поверхностью твердой фазы. Поэтому вопросы гетерогенного катализа должны решаться на основе квантовой теории химической связи и, в частности, на базе теории молекулярных орбиталей. Одновременно необходимо изучать свойства молекул, находящихся на поверхности твердой фазы. Это требует привлечения современных представлений о строении металлов и полупроводников. [c.660]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    И ИХ свойств. Развитие представлений о химической связи в комплексных соединениях переходных металлов прошло четыре стадии. Оно началось с простейшей электростатической теории, которую сменила теория валентных связей, или локализованных молекулярных орбиталей в дальнейшем появилась теория кристаллического поля и, наконец, теория поля лигандов, или делокализованных молекулярных орбиталей. Каждая из этих теорий стала развитием предьщушей. Их последовательное рассмотрение является хорошим способом проследить за развитием представлений о химической связи и дает возможность показать, что одни и те же физические факты можно объяснить в рамках различных и на первый взгляд противоположных предположений. [c.223]

    Рассмотрим сначала электронную волновую функцию молекулы в одноконфигурационном приближении Хартри-Фока с молекулярными орбиталями представленными в виде линейной комбинации базисных атомных орбиталей центрированных только на ядрах  [c.485]

    Во II томе развивается на принципиально новых примерах термодинамическое направление в химии, основы которого были заложены в I томе, и значительно углубляется учение о реакционной способности веществ и кинетике реакций. В основном, однако, внимание обращено на природу химической связи в различных ее проявлениях как в газообразных молекулах, так и в кристаллах. В этом свете затрагивается учение об ионных, металлических и атомных структурах, проблема соединений переменного состава, понятие о связевых и антисвязевых молекулярных орбиталах, представления о соединениях с недостатком и избытком электронов, а также об изоэлектронных молекулах, о заселенности орбиталов и многоцентровых орбиталах и ряд других существенных моментов. [c.3]

    Излагаются совремеппые представления о строении вещества, о химической связи (теория валентных связей и теория молекулярных орбиталей), основные положения химической термодинамики и химия элементом с нривлечсниен структурных и термодинамических представлений. [c.2]

    I ых и свободных л-разрыхляющих молекулярных орбиталей. Как указывалось уанее (см. рис. 54), в молекуле бензола 2р -электроны шести атомов углерода (.бразуют нелокализоаанную л-связь. Согласно теории молекулярных орбиталей этому представлению отвечает возникновение из шести атомных 2р -србиталей шести молекулярных л-орбиталей, три иэ которых оказываются связывающими, три другие — разрыхляющими  [c.520]

    Указанное отнесение орбиталей подтверждено исследованием фотоэлектронного спектра воды, в котором обнаружены три полосы, отвечающие отрыву электронов с трех высших орбиталей узкая, характерная для несвязывающих орбиталей, отвечает МО 1 1 [или 2рхо, см. запись (а)1 и две широкие, характерные для связывающих орбиталей, отвечающих МО Зл и 16г [или г[л и г1з2, см. запись (а)1. Энергии орбиталей соответственно равны 12,6 13,7 и 17,22 эВ. Это убедительное доказательство правильности представлений о делокализованных молекулярных орбиталях. Но можно показать, что распределение электронной плотности такое, как если бы существовали две локализованные двухцентровые связи О—Н. Для этого рас- [c.96]

    В рабочий язык химии прочно вощли льюисовы представления и элек-тронно-точечные структурные формулы. Если известна льюисова структура молекулы, можно кое-что сказать об устойчивости, порядке, энергиях и длинах связей этой молекулы. А если воспользоваться методом ОВЭП, часто удается предсказать и геометрическое строение молекулы. В данной главе будет показано, что можно продвинуться еще дальще в определении электронного строения молекул, исходя из рассмотрения пространственной направленности и энергии валентных атомных орбиталей, принимающих участие в образовании химической связи. Этот более глубокий метод анализа известен под названием теории молекулярных орбиталей. [c.509]

    Теория молекулярных орбиталей позволяет дать и другое объяснение двойной связи в этилене оно основано на представлении о sp -гибридиза-ции валентных орбиталей атомов углерода. Согласно этой модели, две из четырех sp -орбиталей каждого атома углерода перекрываются с двумя аналогичными орбиталями другого атома углерода. В этом случае два углеродных тетраэдра имеют общее ребро, подобно тому как это было описано ранее для. BjHg (см, рис. 13-9). Однако суммарное перекрывание атомных орбиталей в рамках этой модели оказывается меньшим, чем в рамках модели с sp -гибридизацией, откуда следует, что связь должна быть не столь прочной. Кроме того, тетраэдрическая модель с двумя изогнутыми связями предсказывает, что угол Н—С—Н ближе к тетраэдрическому значению 109,5°, чем к значению 120°, основанному на представлении о хр -гибридизации. Экспериментально наблюдаемое значение этого угла (117°) свидетельствует в пользу модели двойной связи, изображенной на рис. 13-19, а не в пользу модели с изогнутыми связями, основанной на представлении о sp -гибридных орбиталях углерода. [c.568]

    Квантовомеханическое описание электрона, данное в гл. 8 учебника, требует наличия у учащихся довольно развитого математического мышления, но многие из них не обладают достаточной для этого подготовкой. Например, дифференциальное уравнение (особенно дифференциальное уравнение второго порядка в частных производных, например уравнение Шрёдингера) может мало о чем говорить среднему студенту. Однако если предполагается подробно обсуждать последующий материал по химической связи (особенно гл. 12 и 13, посвященные молекулярным орбиталям), учащимся необходимо получить твердые представления об атомных орбиталях как о волновых функциях и о возможности составления линейных комбинаций из таких функций как в алгебраической, так и в графической форме. [c.573]

    В самом деле, что заставляет теоретиков, занимающихся изучением строения молекул, немало сил тратить на обсуждение проблем локализации молекулярных орбиталей, выбора оптимального анализа заселенностей и т. д. Ведь в принципе расчет можно провести, используя делокализованные (канонические) молекулярные орбитали, или х<е ограничиться одноцентровым базисом, в результате чего при стандартном анализе заселенностей вся электронная плотность окажется отнесенной к одному атому молекулы. Однако в обоих случаях результаты расчетов не удается интерпретировать в рамках традиционных химических представлений, т. е. в терминах химических связей, неподеленных электронных пар и т. д. И дело не только в необходимости учета старых, давно известных фактов типа аддитивности и трансферабель-ности многих молекулярных свойств, дело еще в стремлении согласовать квантовомеханическое описание с определенным исторически сложившимся стилем химического мышления. Но мы слишком забежали вперед, вернемся к нашей теме и посмотрим, как в квантовой химии рождается понятие молекулярной структуры. [c.106]

    Таким образом, метод молекулярных орбиталей показывает, что кри соединсннн двух атомов в молекулу возможны два состояния электрона две молекулярные орбитали (им отвечают функции <1л и фг), одна с более ннзкой энергией Ei, и другая с более высокой энергией 2.. Это можно иллюстрировать диаграммой, представленной на рис. 1.49 такие диаграммы часто используют- в методе МО. Квадрх1т (его часто заменяют кружком) около уровня энергии означает квантовую ячейку — орбиталь, которая может быть занята одним электроном или двумя электронами с противоположно наиравленнымн спинами, (иногда квантовые ячейки пе изображают, а непосредственно на линиях, показывающих уровни энергии, ставят стрелки, символизирующие спин электронов). [c.101]

    Молекула О2 — б и р а д и к а л. Наличие двух неспаренных электронов в молекуле обусловливает ее парамагнитизм — факт, которому только теория молекулярных орбиталей смогла дать объяснение. До этого считали все электроны в молекуле О2 спаренными. В молекуле О2 избыток связывающих электронов составляет всего две пары, двойная связь должна быть менее ррочной, чем тройная в молекуле N2. Энергия диссоциации молекулы кислорода Од(Ог) =5,П6 эВ и межъядерное расстоянив-г (02) = 1,207 Ю м (1,207 А) отвечают представлениям о двойной связи. Эту двойную связь можно обозначить как о л . [c.80]


Смотреть страницы где упоминается термин Молекулярная орбиталь представление: [c.296]    [c.296]    [c.145]    [c.523]    [c.569]    [c.94]    [c.49]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.31 , c.34 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулярные орбитали орбитали

Орбиталь молекулярная



© 2025 chem21.info Реклама на сайте