Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Превращение макромолекул

    Молекулы и макромолекулы — структурные единицы, из которых строятся твердые вещества соответствующих классов, как мы знаем,— качественно различные объекты. Отсюда и коренное различие молекулярных и атомных твердых веществ. Молекулы — более прочные и подвижные структурные единицы, чем макромолекулы. Превращения молекул связаны с более заметными эффектами и потому обычно не мог т оставаться незамеченными. Между тем превращение макромолекул начинается с незаметно малых изменений их состава. Например, когда от частицы водного кремнезема, содержащей огромное количество, порядка 10 , соответствующих атомов, при небольшом нагревании отсоединяется несколько молекул воды  [c.240]


    КИНЕТИКА ОБРАЗОВАНИЯ И ПРЕВРАЩЕНИЯ МАКРОМОЛЕКУЛ [c.218]

    Превращение макромолекул (макрорадикалов). Деполимеризация (реакция обратная полимеризации) — отщепление молекул мономера от макрорадикала или другого полимерного активного центра. [c.238]

    Адсорбция макромолекул на непористых и достаточно крупнопористых адсорбентах как в статических, так и в хроматографических условиях определяется главным образом тремя процессами — конформационными превращениями макромолекул в растворителе и у поверхности адсорбента, диффузией макромолекул в поры адсорбента и адсорбцией их на поверхности этих пор. Адсорбционное равновесие часто устанавливается довольно медленно — от нескольких часов до нескольких месяцев. [c.333]

    Наряду с химией получения полимеров, разрабатывающей методы синтеза новых полимерных молекул, существуют и быстро развиваются физика и механика полимеров, а также раздел химии полимеров, посвященный закономерностям химических превращений макромолекул, или химической модификации полимеров. Изучаются механизмы и скорости образования полимеров, их струк- [c.5]

    Общность химической природы полимеров и однотипных низкомолекулярных соединений является основой общности их химических свойств и типов химических реакций и превращений. Поэтому понятие химия полимеров делится на две большие и несколько разноплановые составляющие — химия получения полимеров (о чем уже шла речь в ч. 1 книги) и химия превращений макромолекул, т. е. химические реакции макромолекул. Последней цели посвящена ч. 3 книги. Полимерным макромолекулам присущи все химические реакции, которые известны в органической химии для насыщенных и ненасыщенных алифатических и ароматических углеводородов и их производных, других низкомолекулярных аналогов соответствующих полимеров. [c.214]

    На протекание химических реакций макромолекул кроме их большой длины, оказывают влияние и другие факторы пространственное строение элементарных звеньев, форма и различные виды взаимной укладки макромолекул, т. е. надмолекулярные структуры, в том числе и кристаллические области. В зависимости от этого может изменяться глубина химических превращений макромолекул, что сказывается на структуре и свойствах конечных продуктов. 214 [c.214]

    Практически часто применяется смешанная классификация химических реакций в полимерах по видам соответствующих превращений макромолекул и видам воздействия на них. В ряде случаев определенный вид воздействия приводит и к одному виду изменений макромолекул, но иногда в зависимости от химической природы полимеров один И тот же вид воздействия может привести к разным изменениям структуры макромолекул. Например, при действии высоких температур может протекать деструкция, т. е. распад линейных макромолекул у одних полимеров (полипропилен, полистирол), циклизация — у других (полиакрилнитрил), образование сетчатых структур — у третьих (1.2-полибутадиен, сополимер бутадиена со стиролом), а также смешанные случаи (полиизопрен и др.). При облучении, например, полиэтилена одновременно протекают реакции соединения макромолекул друг с другом (сшивание) и распада отдельных молекул (деструкция). [c.219]


    Берлин А. А. Основные направления исследований в области химических превращений макромолекул. Усп. хим.. 1960, т. 29, с. 1189—1228. [c.209]

    Превращение макромолекулы в макрорадикал может привести к разрыву соседней углерод-углеродной связи с образованием нового свободного радикала и полимера с двойной связью на конце цепи  [c.283]

    Химические превращения полимеров, протекающие с заменой одних функциональных групп другими, называются реакциями по л им ер-аналогов ых превращений. Зги реакции не сопровождаются сколько-нибудь значительным изменением степени полимеризации исходного полимера, протекают в соответствии с общими положениями органической химии о реакционной способности различных классов органических веществ. Однако существенное различие реакций полимеров от обычных реакций низкомолекулярных соединений, например этерификации, омыления, хлорирования, нитрования и др., заключается в условиях их проведения. Высокая вязкость расплавов и растворов полимеров затрудняет протекание химических, превращений и замена одной функциональной группы или активного атома другой группой или атомом происходит не полностью, остаются непрореагировавшие звенья. Таким образом, получается смешанный полимер или сополимер, состоящий из звеньев исходного и нового полимера. Если при синтезе низкомолекулярного соединения можно отделить полученное вещество от исходного и определить его выход, то при химических превращениях макромолекул это сделать невозможно. Определяют не выход, а степень превращения в процентах. [c.7]

    Значительное количество работ посвящено исследованию адсорбции полимеров на поверхности твердых тел методом ЭПР с использованием в качестве спиновых меток нитроксильных радикалов [49]. С помощью этого метода получены результаты о конформационных превращениях макромолекул на поверхности твердых тел. [c.293]

    Целлюлоза как полярный гетероцепной полимер, для которого характерно сильное внутри- и межмолекулярное взаимодействие, относится к жесткоцепным полимерам. Однако цепи целлюлозы не являются абсолютно жесткими. У нее, как у всех полимеров, возможны конформационные превращения двух видов конформационные превращения макромолекул и конформационные превращений мономерных (глюкопиранозных) звеньев. [c.229]

    Аморфные области в микрофибриллах целлюлозы изучены недостаточно, и сведения об их надмолекулярной структуре ограничены. Уподоблять структуру аморфных областей структуре препаратов полностью аморфной (аморфизированной) целлюлозы неправомерно. В аморфных областях целлюлозы по сравнению с полностью разупорядоченным состоянием конформационные превращения макромолекул целлюлозы более ограничены. [c.245]

    На рис. 1.11 виден второй кооперативный переход — уже при больших содержаниях ДМФ. Он связан с ионизацией карбоксильных групп и превращением макромолекулы в полиэлектролит. [c.59]

    Здесь невозможно рассмотреть все огромное многообразие химических превращений макромолекул [5]. Такие реакции позволяют иногда синтезировать полимеры, мономеры которых не известны (например, поливиниловый спирт) или трудно синтезируемы, не способны к полимеризации или полимеризуются плохо. Это относится к винилгидрохинону, который, как и сам гидрохинон, является ингибитором полимеризации. Проведя защиту гидроксильных групп фенола путем ацетилирования, получают продукты, способные к полимеризации, с которых после полимеризации снимают защиту . [c.238]

    Конформационные превращения макромолекул как ири плавлении кристаллического полимера, так и при растяжении цепи кооперативны. [c.76]

    Исследования диэлектрических характеристик в миллиметровом диапазоне длин волн позволяют получать уникальную информацию о состоянии водного компонента биосистем. Изучение этим методом ближайшего гидратного окружения макромолекул позволило построить модель, количественно адекватную данным рентгеноструктурного анализа водное окружение молекул повторяет изменения конформации при их перестройках [1, 2]. Гидратное окружение, включающее разные типы связанной воды, является одним из первостепенных участников акта самоорганизации, определяя возможность системы упорядочиваться за счет низкомолекулярного компонента, который является резервуаром, обеспечивающим его термодинамическую и электростатическую стабильность. Наблюдаемые изменения состояния водного компонента биообъектов при конформационных превращениях макромолекул и надмолекулярных комплексов разных уровней организации дает новый метод анализа эффективности качества лекарственных препаратов, который может найти щирокое применение как при создании новых лекарственных форм, так и при их производстве [3-5]. [c.630]

    Переход от линейных полимеров к сетчатым сопровождается резким увеличением степени полимеризации (в пределе образуется одна гигантская макромолекула). В данном случае в отличие от полимераналогичных превращений макромолекула реагирует как единое целое, сетка образуется независимо от того, какое звено прореагировало, хотя это не безразлично для структуры трехмерного полимера. Достаточно реакции одного звена с одной молекулой сшивающего агента или в отсутствие его возникновения хотя бы одной связи между линейными макромолекулами, чтобы они утратили кинетическую самостоятельность. [c.617]


    На химические превращения макромолекулы ВМС существенное влиянне оказывают слабые взаимодействия между ними (пятая стадия). Суммарная эиергия слабых взаимодействий (физических) может превышать энергию, необходимую для расщепления макромолекул (химическую). Однако отдельные звенья молекул ВМС и надмолекулярных структур (боковые цепочки, радикалы) могут иметь прочность связей значительно меньшук ), чем сосредо- [c.161]

    Мономерные звенья могут иметь различные пространственные конфигурации в полимерной цепи. Мономерное звено, включающееся в растущую цепь, приобретает определенную пространственную конфигурацию либо в результате данного элементарного акта роста, либо после присоединения последующего мономерного звена к активному центру, что зависит от механизма полимеризации. В дальнейшем образовавшаяся конфигурация звена в цепи может быть изменена только в результате химического превращения макромолекулы. Если полимеризация происходит так, что из ряда возможных последовательностей конфигураций при построении макромолекул в цепи повторяется только одна конфигурация мономерного звена либо несколько конфигураций, чередующихся по определенному закону, то полимеризация называется стереоспеци-фической. Полимеры, образующиеся в результате стереоспецифи-ческой полимеризации, называются стереорегулярными. [c.23]

    Образующиеся свободные радикалы стабилизованы в результате сопряжения электронного облака неспаренного электрона с электронным облаком двойной связи в а-положении. Превращение макромолекулы в макрорадикал может привести к разрыву соседней углерод-углеродной связи, причем образуется новый свободный радикал и выделяется молекула мономера (изопренаЗ  [c.235]

    МОЛЕКУЛЯРНО-МАССОВОЕ РАСПРЕДЕЛЁНИЕ (полидисперсность полимеров), соотношение кол-в макромолекул различной мол. массы в данном образце полимера. Существование ММР характерно гл. обр. для синтетич. полимеров и обусловлено статистич. характером р-ций их образования, деструкции и модификации. Молекулы биополимеров имеют, как правило, одинаковую мол. массу. ММР оказывает существ, влияние на макроскопич. св-ва полимеров, и прежде всего на механические. Знание ММР дает дополнит, информацию о механизмах образования и превращения макромолекул. [c.114]

    Современная Т. включает произ-во прецизионной калориметрич. аппаратуры. Выпускаемые серийно в ряде стран микрокалориметры отличаются высокой чувствительностью, практически неограниченной продолжительностью измерений и широко применяются при определении небольших тепловых эффектов и теплот медленных р-ций, недоступных ранее для прямого термохйм. изучения (гидролиз сложных эфиров, этерификация, гидратация оксидов, твердение цемента и др.). Развитие микрокалориметрии открыло возможности для термохйм. изученйя биохим. процессов и превращений макромолекул. Изучаются тепловые эффекты, сопровождающие ферментативные р-ции, фотосинтез, размножение бактерий и др. Дифференциальные сканирующие калориметры позволяют ускорить и упростить измерение теплоемкостей и теплот фазовых переходов по сравнению с классич. приборами, действующими па принципе периодич. ввода энергии. [c.547]

    В обзоре [13] отмечается, что полифторалкоксифосфазены имеют лабильную структуру, зависящую от условий получения полимера и его термической предыстории. Главной причиной формирования мезоморфного состояния этих полимеров является специфическое взаимодействие основной полимерной цепи с боковыми цепями, содержащими большое число электроотрицательных атомов фтора. Особенно большое внимание уделялось исследованию поли[бис(трифтор-этокси)фосфазена]. Отмечается, что своеобразное строение мезофазы этого полимера обуславливает способность полимерного материала в мезоморфном состоянии течь подобно жидкости. Структура изотропного расплава полифосфазена сохраняет основные черты строения мезофазы, отличаясь свернутой конформацией макромолекул [212]. В области 453-493 К существенно изменяются реологические свойства и ряд структурных характеристик мезофазного расплава полимера, что сопровождается тепловым эффектом [213]. Предполагают, что в этой области температур происходит конформационное превращение макромолекул полимера с образованием структуры, промежуточной между одномерной слоевой и двумерной псевдогональной. Обнаружена высокая чувствительность мезофазы поли[бис-(фторэтокси)фосфазена] к приложенному давлению (до 400 МПа) повышение температуры перехода полимера (Г]) из кристаллического состояния в мезофазу, резкое расширение области существования мезофазы с ростом давления, а также ее упорядочение [211]. [c.352]

    Конформационные превращения макромолекул обусловлены внутренним вращением глюкориранозных звеньев вокруг гликозидных связей. Эти конформационные превращения и придают цепям целлюлозы гибкость. При нагревании и (или) пластифицировании целлюлозы ее цепи [c.229]

    К числу наиболее важных химических превращений макромолекул относятся различные реакции целлюлозы [6], в мономерном звене которой все или часть гидроксильных групп можно превратить в простую или сложноэфирную группу. В зависимости от числа ацетилированных гидроксильных групп в мономерном звене получают триацетат целлюлозы, вторичный ацетат целлюлозы и т. д. Другой важной реакцией является превращение целлюлозы в ксантогенаты. Водные растворы натриевых солей ксантогенатов целлюлозы, известные как вискоза , пропускают через ванны, содержащие минеральные кислоты, для регенерации целлюлозы и [c.238]

    Преимущественное протекание при старении полимеров цепных реакций деструкции или структурирования зависит от химического строения цепей. Как правило, виниловые полимеры еклонны к деструкции, некоторые диеновые полимеры — к структурированию. Во всех видах старения деструкция макромолекул происходит тогда, когда в некоторых частях цепей сосредотачивается энергия, превосходящая энергию простой С—С-связи (305 кДж/моль). Это приводит к превращению макромолекулы в макрорадикал. [c.67]

    Механохимия полиэлектролитов определяется кон( юрмацион-ными превращениями макромолекул. Превращения эти кооперативны. Константы диссоциации ионизуемых групп в полимере отличаются от таковых для мономера, вследствие электростатического отталкивания соседних заряженных групп, зависящего от конформаций цепи. Эти явления находят свое выражение в кривых потенциометрического титрования (см. 3.7). [c.390]

    С. С. Медведев, Симпозиум по кинетике и механизму образования и превращения макромолекул. Тезисы докладов. Ереван, изд. АН АрмССР, 1966, стр. 3. [c.285]


Библиография для Превращение макромолекул: [c.393]    [c.223]    [c.99]    [c.204]   
Смотреть страницы где упоминается термин Превращение макромолекул: [c.173]    [c.538]    [c.278]    [c.335]    [c.84]    [c.435]    [c.237]    [c.35]    [c.422]   
Смотреть главы в:

Биохимия мышечной деятельности -> Превращение макромолекул

Биохимические основы жизнедеятельности организма человека -> Превращение макромолекул




ПОИСК







© 2025 chem21.info Реклама на сайте