Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Особенности химических реакций макромолекул

    ОСОБЕННОСТИ ХИМИЧЕСКИХ РЕАКЦИЙ МАКРОМОЛЕКУЛ [c.14]

    Надмолекулярные эффекты. Проследить влияние надмолекулярной организации полимера на химические реакции с участием макромолекул — весьма трудная задача, поскольку обычно изменение скорости реакции, которое может иметь место при переходе от молекулярно-дисперсной фазы к структурированной, связано с возникающими диффузионными трудностями, и изменяется не реакционная способность макромолекулы или ее звеньев, а доступность этой макромолекулы для атаки второго реагента. Так, многочисленные реакции целлюлозы, которые протекают с разными скоростями и до разных степеней конверсии в зависимости от характера предварительной обработки целлюлозы, как раз и обусловлены различной доступностью гидроксильных групп для других реагентов, хотя вполне вероятно, что укладка макромолекул, плотность сетки водородных связей и другие факторы тоже вносят свои вклад в особенности химического поведения макромолекул [c.31]


    Химические свойства целлюлозы определяются строением ее макромолекулы как полисахарида, состоящего из звеньев глюкозы. Для целлюлозы при этом характерны все особенности химических реакций ВМС. [c.120]

    Изложенные выше примеры и рассмотренные представления показывают, каковы могут быть те особенности реакций макромолекул, которые связаны с полимерным состоянием вещества. Здесь рассматривались в основном реакции либо мономолеку-л я р н ы е, либо типа макромолекула — низкомолекулярный реагент, хотя это лишь доля вообще химических реакций макромолекул. В частности, почти совсем не разобрана проблема реакций макромолекула — макромолекула, т. е. собственно химия макромолекул — реакции в мире больших молекул. Создание и разработка теории реакционной способности макромолекул и доведение ее хотя бы до такого состояния, какое уже достигнуто в теории полимеризации (последняя, правда, только сейчас начинает учитывать реальное строение и форму растущей цепи в растворе) — одна из важнейших задач современной пауки о полимерах. [c.274]

    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]

    Каковы же коренные физические различия молекул и макромолекул Главное из них заключается в том, что масса макромолекул огромна и они обладают поверхностью. Отсюда вытекают и все особенности твердого вещества. В то время как молекулы подвижны, диффундируют в окружающей среде, макромолекулы в тепловом движении не могут перемещаться. Они реагируют только с теми веществами, которые попадают на их поверхность или, i когда дело касается твердых веществ, плотно примыкают к их поверхности. В первом случае мы встречаемся с сорбцией — проявлением универсального свойства твердых тел достраиваться с поверхности путем присоединения любых структурных единиц, любыми силами, включая силы Ван-дер-Ваальса во втором — с адгезией— процессом синтеза пространственно разделенных твердых молекулярных соединений — аддуктов. Как уже упоминалось, наружные атомы по сравнению с внутренними атомами твердого тела связаны менее прочно и находятся в состоянии повышенной химической активности. Вот почему макромолекулы сравнительно легко вступают во всевозможные химические реакции, в том числе и при контакте твердых тел. При этом, благодаря большой массе и связанной с этим особой прочности макромолекула является настоящим резервуаром избыточной энергии. Последняя, выделяясь [c.16]


    Однако большие размеры макромолекул и их полифункциональность вносят в химические реакции полимеров ряд особенностей. [c.51]

    Наконец, существует большое число реакций, в которых звенья макромолекул ведут себя совсем не так, как их низкомолекулярные аналоги. Это поведение макромолекул в химических реакциях связано с особенностями проявления некоторых специфических эффектов, которые перечислены ниже. [c.52]

    Таким образом, окисление полимеров молекулярным кислородом— одна из самых распространенных химических реакций, которая является причиной старения полимеров и выхода из строя изделий. Окисление ускоряется под действием ряда химических реагентов и физических факторов, особенно тепловых воздействий. Процесс окисления протекает по механизму цепных свободнорадикальных реакций с вырожденным разветвлением. Механизм и кинетический анализ процесса термоокислительной деструкции полимеров показывают влияние химической природы полимера на его стойкость к этим воздействиям. Стабилизация полимеров от окислительной деструкции основана на подавлении реакционных центров, образующихся на начальных стадиях реакции полимера с кислородом, замедлении или полном прекращении дальнейшего развития процесса окислительной деструкции. ЭтЬ достигается введением ингибиторов и замедлителей реакций полимеров с кислородом, причем одни ингибиторы обрывают цепные реакции, другие предотвращают распад первичных продуктов взаимодействия полимерных макромолекул с кислородом на свободные радикалы. Сочетание ингибиторов этих двух классов позволяет реализовать эффект синергизма их действия, приводящий к резкому увеличению времени до начала цепного процесса окисления (индукционного периода). [c.275]

    Химические реакции высокомолекулярных соединений не отличаются от реакций классической органической химии, но большой размер и сложность строения макромолекул вносят в эти превращения свои особенности. [c.211]

    Иногда наблюдается очень хорошая корреляция между данными ТГА и ТИА. Однако, хотя эти методы (особенно при их совместном применении) позволяют получить обширную информацию о реакциях термического разложения полимеров, ее можно рассматривать только как предварительную, поскольку она не содержит прямых доказательств о природе протекающих химических реакций. Например, ТГ А при высокой температуре не регистрирует реакций гидролиза, сопровождающихся образованием большого количества фрагментов разрушенных макромолекул. [c.396]

    На механодеструкцию большое влияние оказывает среда процесса. Особенно интенсивно она протекает в атмосфере кислорода и при повышенной температуре. Часто механические напряжения не вызывают разрыва макромолекул, а активируют другие химические реакции в полимерах. Иногда механодеструкцию проводят специально, например, для снижения молекулярной массы полимеров, и соответственно облегчения их [c.114]

    Определение функциональных групп, находящихся в полимерной цепи, химическими методами основано на их непосредственном количественном взаимодействии с подходящими реагентами без предварительного разрушения цепи. Как правило, реакционная способность функциональных групп при переходе от мономера к полимеру изменяется мало, однако следует иметь в виду, что химические реакции функциональных групп полимеров из-за большой молекулярной массы и сложной структуры макромолекул имеют особенности, которые необходимо учитывать при выборе реагентов. [c.90]

    Механические силы, растягивающие, но еще не разрывающие цепную молекулу, способны изменять реакционную способность химических связей и, следовательно, влиять на скорость химических реакций. Это явление особенно заметно при многократной деформации, когда полимер не успевает релаксировать за один цикл деформации и в нем поддерживаются некоторые постоянные градиенты напряжения. Даже при наложении малых нагрузок благодаря неоднородному распределению напряжения в микрообластях в отдельных макромолекулах возникают большие напряжения, действующие против валентных сил и ослабляющие их. Вследствие этого снижается энергия активации и ускоряется химическая реакция. [c.641]

    Кристаллическая фаза для упрощения классификации -рассматривается как совершенная, несмотря на неполную или несовершенную кристаллизацию. Естественно, что при более детальной оценке свойств уже внутри классификационной группы необходимо считаться с аморфной составляющей кристаллической фазы, особенно если речь идет о набухании, о химических реакциях и о других процессах, в которых прямо или косвенно проявляется доступность макромолекул и их активных групп для взаимодействия с каким-либо реагентом. Но это выходит за пределы задачи классификации и поэтому здесь может быть опущено. [c.88]


    Как и в большинстве других случаев, старение этих полимеров является сложным комплексом различных процессов. Полимеры становятся более хрупкими, особенно на свету, что указывает на происходящие при этом реакции сшивания (см. ранее), протекающие как с участием кислорода, так и в его отсутствие однако аналогичный эффект могут оказывать к потери пластификатора, происходящие в результате химических реакций или физических процессов. Наиболее важн.ым проявлением старения полимеров этой группы является изменение окраски, которое сопровождает отщепление НС1. Рассмотренные выше данные о распаде низкомолекуляр ных сложных зфиров, а также наши знания о строении полимеров этого типа подтверждают взгляды Марвела, Сэмпла и Роя [19], принимавших, что изменение окраски обусловлено образованием сопряженной структуры при отщеплении молекул кислоты от соседних мономер тых звеньев макромолекулы [c.229]

    Химические превращения в цепях — это не просто область синтеза новых высокомолекулярных соединений, хотя такой подход и очень важен для химика-практика, но область, тесно связанная с проблемами реакционной способности макромолекул и их функциональных групп. При рассмотрении макромолекулярных реакций следует ясно представлять себе, как ведет себя макромолекула — ее химическую индивидуальность, в чем могут проявляться и проявляются специфические особенности ее химического поведения по сравнению с низкомолекулярными веществами аналогичного строения. Речь идет, по существу, о том, насколько вправе химик-исследователь переносить известные представления и закономерности из мира реакций низкомолекулярных органических веществ в область макромолекулярных реакций. Выявление существующих различий в этих реакциях и обнаружение специфических закономерностей (буде они проявятся) химических превращений макромолекул необходимо для целенаправленной химической модификации полимерных материалов и управления этими процессами. [c.14]

    Хотя гидролитическую деструкцию полимеров впервые изучали на примерах белков и целлюлозы, позднее в этом направлении начали исследовать синтетические продукты поликонденсации, особенно полиэфиры и полиамиды. Технологическое значение реакций гидролиза полимеров как в процессе их синтеза, так и при их использовапии заключается в том, что гидролиз макромолекул вызывает снижение разрывной прочности. Вследствие этого необходимо знать механизм гидролитической деструкции отдельных полимеров, а также иметь возможность сравнивать разные полимеры по устойчивости их к гидролизу. Для выяснения механизма в свою очередь нужно определить скорость исследуемой химической реакции, а также влияние физической структуры полимера на скорость этой реакции. [c.5]

    В реакциях получения полимеров в качестве исходных соединений используются обычно летучие вещества, а в некоторых реакциях (например, в реакциях поликонденсации) выделяются летучие продукты [1]. Присутствие полимера в реакционной смеси, как правило, не является препятствием для использования газо-хроматографического метода. Методы определения летучих продуктов в полимерных системах подробно разработаны (см. главу IV). Поэтому газо-хроматографические методы могут быть использованы непосредственно для определения кинетики реакции по изменению концентраций расходуемых мономеров или образующихся продуктов. В связи с особенностями применения газо-хроматографических методов для изучения кинетических закономерностей реакций образования или превращения макромолекул в зависимости от типа реакции представлялось целесообразным рассмотреть применение газовой хроматографии для изучения реакций полимеризации (сонолимеризации), ноликонденсации и некоторых химических превращений макромолекул. [c.82]

    Из сказанного следует, что учет структурно-морфологических аспектов может оказаться весьма существенным даже при рассмотрении особенностей процессов образования макромолекул в макроскопически гомогенных системах. Указанные соображения могут иметь весьма общее значение и, вероятно, открывают перспективы целенаправленного воздействия на надмолекулярную структуру и, следовательно, на свойства полимерных тел, получаемых полимеризацией в массе (например, стекол), путем вариации условий проведения химической реакции и введения в реакционные системы специально подобранных добавок. [c.124]

    Специфика протекания химических реакций в твердых полимерных матрицах непосредственно связана с особенностями кинетики процессов старения и стабилизации полимеров. Кинетика реакций находится в прямой зависимости от физической структуры и интенсивности молекулярных движений в полимерах. Природа такой взаимосвязи структуры и кинетики состоит в том, что молекулярные перестройки, т. е. процессы структурной релаксации макромолекул в твердых полимерах, затруднены и поэтому за время элементарного акта химической реакции не всегда успевает реализоваться наиболее выгодное состояние переходного комплекса. [c.84]

    Характерной особенностью продуктов реакций, начинающихся и заканчивающихся в гомогенной среде, например ацетатов целлюлозы, получаемых ацетилированием целлюлозы, растворенной в фосфорной кислоте, является их относительно высокая однородность по химическому составу и по свойствам, так как морфологическая структура волокна при растворении в значительной степени разрушается, и диффузия реагентов к отдельным макромолекулам или их агрегатам осуществляется примерно с одинаковой [c.248]

    В отличие от химических реакций высокомолекулярных соединений, когда взаимодействие функциональных групп в застеклован-ном состоянии практически невозможно, а при переходе в область высокоэластических деформаций и особенно в вязкотекучее состояние возрастает, эффективность механодеструкции макромолекул увеличивается при понижении температуры, особенно после перехода в область стеклообразного состояния.. [c.405]

    Химические реакции полимеров (и в том числе ПВХ) имеют определенные особенности из-за сложности строения и ограниченной подвижности макромолекул реагирующих веществ, обусловливающих усиление стерических факторов. [c.412]

    Высокая склонность макромолекул к агрегации н к структуро-образованию даже в разбавленных растворах, как это видно из результатов исследований, проведенных в последние годы, показывает, что надо учитывать и эту особенность химического поведения макромолекул. Причем десь существенно з.1 [Я1 иг ня.тмс -лер.уляриой организации, ьс го.поря о том, что таки- структур ые надмолекулярные эффекты должны сказываться, естественно, и в топо химических реакциях, протекающих в твердой фазе. Наконец, механически напряженное состояние полимерных цепей в процессе деформации также приводит к изменению реакционной сиособ.тости звеньев не только по сравнению с низкомолекуляр- [c.60]

    Современные достижения в синтезе виниловых полимеров, различающихся только по характеру пространственного расположения звеньев мономера в макромолекуле, позволили связать особенности химических реакций с типом стереорегулярности полимеров. Одновременно стало возможным на основании учета специфических взаимодействий функциональных групп объяснить некоторые эффекты, считавшиеся ранее исключениями. Моравец [212] показал, что введение в макромолекулу полимерной кислоты звеньев ге-нитроанилидметакрилата увеличивает примерно в 1000 раз устойчивость этого соединения к омыляющему действию 1 н. раствора едкого натра по сравнению, например, с аналогичными по строению ге-нитроанилидами триметилуксусной и глутаровой кислот. [c.90]

    Давно известно и используется изменение свойств, связанное с механической обработкой полимерных материалов. Так, например, уже 120 лет известно, что обработка натурального каучука вызывает его ра-змягчение [225]. Но только после того, как появилось понятие макромолекул, этот эффект механической обработки стали связывать с разрывом молекулярных цепей. В 1941 г. впервые было установлено, что интенсивное дробление гетерофазной смеси (каучука и ангидрида малеиновой кислоты) может вызвать химическую реакцию между компонентами [224]. Систематические исследования природы данных химических реакций, и особенно роли образовавшихся свободных радикалов, были начаты примерно на десять лет позднее [224, 225]. [c.415]

    Деструкция полимеров. Химические реакции элементарных звеньев высокомолекулярных соединений часто осложнены побочными реакциями деструкции макромолекул. Строго говоря, полимераналогичные превращения возможны только в особых условиях, полностью исключающих деструкцию макромолекулы. В обычных условиях реакции элементарных звеньев сопровождаются частичной деструкцией, особенно реакции гетероцепных полимеров. Но и карбоцепные полимеры, которые содержат в цепи углерод-углеродпую связь, обладающую малой реакционной способностью, также часто деструктируются при химических превращениях. Поэтому к полимераналогичным превращениям условно относят и такие реакции полимеров, при которых протекает частичная деструкция макромолекулы, но не она определяет конечный результат реакции. [c.222]

    Вторая группа — это реакции деструкции, которые могут протекать под действием кислорода, а также различных физн-чески.х факторов (тепло, свет, излучение п Др.). Особенность этих реакций — существенное из.мененнс физико-химических свойств полимера даже при незначительной глубине реакции. Так, одного акта деструкции на макромолекулу достаточно, чтобы молекулярная масса полимера уменьшилась приблизительно вдвое и изменились его механические свойстна. Образования одной межмолекулярнои связи на макромолекулу доста-точно, чтобы полимер потерял способность растворяться. [c.174]

    Предлагаемый вниманию читателя учебник написан известным американским биохимиком Д. Мецлером. Автор поставил перед собой цель дать анализ структур, функций и процессов, характерных для живой клетки, с позиций современной биоорганической химии и молекулярной физики. Он концентрирует внимание на всестороннем рассмотрении протекающих в клетках химических реакций, на ферментах, катализирующих эти реакции, основных принципах обмена веществ и энергии. Впервые приведена классификация химических механизмов ферментативных реакций (нуклеофильное замещение, реакции присоединения, реакции элиминирования, реакции изомеризации и др.). В этом наиболее наглядно проявилась особенность рассмотрения биохимических проблем с позиций биоорганика. Обстоятельно изложены многие вопросы, которым прежде не уделяли должного внимания в курсе биохимии. Это касается в частности количественной оценки сил межмолекулярно-го взаимодействия, принципов упаковки молекул в надмолекулярных структурах (самосборка), кооперативных структурных изменений макромолекул и их комплексов. Приведены основные сведения о структуре и функциях клеточных мембран, об антигенах и рецепторах клеточных поверхностей. Весьма подробно рассмотрены также вопросы фотосинтеза, зрения и ряда других биологических процессов, связанных с поглощением света при этом охарактеризована природа некоторых физических явлений, наблюдаемых при взаимодействии света и вещества. [c.5]

    ТСХ - один из наиболее простых и эффективньпс методов изучения состава смеси малолетучих и разлагающихся при нагревании органических соединений, а также ус тановления степени их чистоты. Метод может быть использован для экспресс-анализа реакщ10нных масс, т.е. слежения за течением химических реакций. ТСХ позволяет [48, 49] разделять полимерные фракции по молекулярной массе, по разветвленности, степени блочности, регулярности и другим структурным особенностям макромолекул оценивать неоднородность по составу сополимеров, поскольку адсорбционная активность макромолекул сополимеров зависит от их состава, особенно при сильных различиях в полярности сомономеров. Подбирая надлежащим образом пары раствори гель - осадитель, можно добиться высокой разрешающей способности метода [50]. [c.105]

    По своей природе химические реакции полимеров в принципе не отличаются от реакций в органической хкмии, но большие размеры и строение макромолекул вносят особенности в эти реакции. [c.98]

    Полимеризацией (см. гл. 3) называется такая химическая реакция, цри которой мономеры, содерЖ1ащие реакционноспособные двойные связи или мономеры циклического строения, путем последовательного присоединения образуют макромолекулы либо спонтанно, либо под воздействием инициаторов или катализаторов. Однако особенностью полимеризации являются не сам 1 стадии процесса црисоединения, а, скорее, его кинетика полимеризация представляет собой цепную реакцию. Различают цепную радикальную и цепную ионную полимеризацию ионная полимеризация может протекать по анионному и катионному механизмам. Процесс образования сравнительно низкомолекулярных продуктов называется олигомеризацией. [c.16]

    Заключительный этап получения продукта в химическом производстве, а также на каждой технологической стадии этого производства, как правило, связан с разделением сложных смесей разнообразных продуктов, образующихся в результате химической реакции, выделением и очисткой целевого продукта, а также с регенерацией катализатора и применяемых растворителей. Получение чистого вещества — одна из важнейших проблем современной химической технологии, особенно в производстве мономеров. От присутствия в них той или иной примеси при полимеризации мономеров может происходить - <сшквание> макромолекул и образование трехмерной структуры с другой стороны, наличие посторонних примесей мож т привести к обрыву роста цепи макромолекулы в результате реакции с активным центром. И то и другое нежелательно. [c.172]

    Эта особенность фенопластов и ряда подобных им полимерных материалов имеет очень большое значение для промышленности. С одной стороны, полимер должен быть растворимым и формоваться при возможно более низких температурах, только тогда его переработка в изделия будет удобна и экономически выгодна. С другой стороны, от полимерных изделий требуются максимальная прочность, теплостойкость (тугоплавкость) и химическая стойкость. Удовлетворение этих противоположных требований становится возможным вследствие того, что процесс формования изделий сопровождается химической реакцией сшивания макромолекул п тррумррный ппдимер (химическое формование). [c.303]

    Конфигурационные эффекты. Наличие рядом с реагирующим звеном другого звена той же химической природы, но иной пространственной конфигурации является причиной того, что полимеры винилового типа, способные образовывать синдиотактические и изотактические диады звеньев, проявляют различную реакционную способность в зависимости от относительной конфигурации асимметрических или псевдоасимметрических атомов углерода в цепи. Особенности химического поведения различных стереоизомеров одной и той же макромолекулы, включая и вопросы цис-транс-изоше-рии, являются предметом рассмотрения в I главе настоящей монографии. Здесь же остановимся на некоторых необычных реакциях, протекающих в полимерах и обусловленных наличием соседних групп. В этих случаях, когда возможны реакции, в которые вовлекаются два соседних звена, аналогия с монофункциональным низкомолекулярным соединением становится неполной. [c.18]

    Реакции между химически комплементарными макромолекулами в растворах следует рассматривать, как было показано выще, как кооперативные взаимодействия макромолекул. Круг таких реакций достаточно широк — это, прежде всего, ионные реакции (VII.2), (Vn.3) и (Vn.4), в которых хотя бы один из полимеров является заряженным реакции переноса протона, приводящие к образованию полимерных солей из неионизованных макромолекул наконец, это реакции, приводящие к возникновению поликомплексов, стабилизированных слабыми взаимодействиями между звеньями— водородными связями, гидрофобными взаимодействиями и др. Именно кооперативный характер взаимодействий определяет высокую устойчивость продуктов межмакромолекулярных реакций по сравнению с аналогичными соединениями, образованными из малых молекул. Рассмотрим некоторые особенности межмакромолекулярных реакций, являющиеся следствием длинноцепочечной природы реагентов. [c.241]

    Изложенный выше материал показывает, что уже начал формироваться количественный подход к описанию реакций с участием макромолекул. Ясно также, что существуют некие качественные особенности макромолекулярных реакций, делающие их отличными от химических превращений с участием малых органических молекул. Если качественная картина реакций макромолекула — низкомолекулярный реагент в основных чертах начинает проясняться, то область менсмакромолекулярных реакций — это практически совсем неизведанное поле для исследований, и нет никакого сомнения, что химиков здесь ждут важные и совершенно новые открытия. Первые успехи в развитии химии макромолекулярных поликомплексов линейных систем, как об этом говорилось в гл. vn, обнадеживают исследователей, ведущих работы в самых разных направлениях этой области. [c.253]

    Следует также иметь в виду, что область межмакромолекулярных реакций охватывает и проблемы формирования сеток на основе разветвленных и олигомерных систем, в том числе сеток со взаимно проникающими цепочками, и проблемы сшивания линейных макромолекул (включая отверждающиеся термореактивные смолы и вулканизующиеся каучуки). Таким образом, понимание физической картины протекания химической реакции с участием макромолекулярного реагента —со всеми конфигурационными, Бадмолекулярными и иными особенностями его химического поведения— весьма важно для управления таким процессом с целью создания материала с нужным комплексом свойств. В качестве примера можно привести задачу формирования так называемых регулярных сеток с одинаковыми расстояниями между узлами и задачу создания мембран с однородными и регулярно расположенными порами на основе продуктов взаимодействий линейных макромолекул. [c.253]

    Изучение механизма катализа реакций образования полиуретанов позволило Ю. С. Липатову с сотр. установить связь между структурой катализатора и его активностью [164]. На основе исследования кинетики и свойств макромолекул на разных стадиях формирования полимерной сетки Т. Э. Липатовой создана теория структурного гелеобразования, нф базе которой установлены особенности химического поведения полиуретанов, нашедших широкое практическое применение (иолиуретановые-эмали, клеи, термопласты, материалы для хирургии и т. п.) [165]. [c.130]

    Кристаллизация из расплава - наиболее часто встречающийся случай кристаллизации макромолекул (разд. 6.3.1). Основными структурными элементами являются ламели со сложенными макромолекулами (разд. 3.3.2), которые часто объединены в сферолитные надструктуры (разд. 3.7, табл. 3.5). В противоположность кристаллизации из раствора в ламелях, выращенных из расплава, после начального роста может происходить значительное совершенствование (разд. 6.1.6). Установлено, что в процессе совершенствования быстро увеличивается длина складки, особенно в процессе кристаллизации расплава полиэтилена при повышенном давлении (см. рис. 6.60). В этом разделе рассматривается отжиг при температурах более высоких, чем температура кристаллизации. В разд. 7.3.1 обсуждается отжиг обычных выращенных из расплава ламелярных кристаллов, а в разд. 7.3.2 -отжиг кристаллов, подвергнутых деформации. Основной темой разд. 7.3.3 является сравнение роста кристаллов полиэтилена с выпрямленными цепями при повышенном давлении с отжигом кристаллов со сложенными цепями при повышенном давлении. В заключительном разд. 7.3.4 рассмотрено протекание химических реакций в процессе отжига. [c.497]

    Спектры высокого разрешения можно получить, наблюдая ЯМР в растворах и расплавах полимеров. По хилмическим сдвигам и спин-спиновому расщеплению можно судить о структуре макромолекулы полимера. Особенно большие успехи получены за последние годы при изучении стереорегулярности полимеров. Для ряда полимеров и сополимеров удалось полностью определить порядок присоединения звеньев в цепи. Изменение спектра ЯМР высокого разрешения раствора полимера с температурой дает информацию о характере молекулярных движений в растворе. Химические реакции функциональных групп полимера, реакции ионного обмена, образование водородных связей и другие процессы в растворе также могут изучаться с применением метода ЯМР высокого разрешения. [c.14]

    Если при дегидрохлорировании низкомолекулярных модельных соединений на начальной стадии в реакцию вступают молекулы такого же строения, как и в конце процесса, то при дегидрохлор и ро-ванин поливинилхлорида в каждый момент реакции хлористый водород отщепляется от макромолекул различной структуры. С учетом этого распад поливинилхлорида можно рассматривать как комплекс последовательных реакций . Воспользоваться для расчета методом стационарных концентраций, предполагающим неизменное содержание промежуточных продуктов, из-за особенностей распада полимера не представлялось целесообразным и поэтому было выведено дифференциальное уравнение, характеризующее реакцию дегид-рохлорнрования. При выводе уравнения использована теория абсолютных скоростей химических реакций Вина —Джонса и Эйрин-га, учитывающая при определении кинетических параметров термодинамические факторы. Было принято также допущение о том, что дегидрохлорирование является мономолекулярным стохастическим процессом. Это допущение не противоречит известному положению о том, что при влиянии на какой-либо процесс многих факторов, из которых ни один не является существенно преобладающим, вероятность события определяется нормальной функцией распределения. Можно допустить, что скорость отщепления хлористого водорода от лабильных групп различной химической природы, находящихся в сегментах цепей с различной тактичностью, в целом описывается нормальной функцией распределения. Выведенное дифференциальное уравнение имеет вид  [c.289]

    Характерной особенностью полимеров, в частности эластомеров, является возможность иннциировання химических реакций в поле механических сил. Благодаря большой длине макромолекул суммарная энергия межмолекулярных взаимодействий элементарных звеньев может превысить энергию химической связн в цени энергия связн С—С равна 294 кДж/моль и таким образом сумма энергий межмолекулярных взаимодействий уже 100 мономерных звеньев в цени полндненов больше этой величины. По этой причине механические напряжения (сдвиговая деформация прп переме-шиванин) могут вызвать разрыв химических связей в молекулярных цепях с образованием свободных радикалов (или ионов), которые способны к дальнейшим химическим реакциям друг с дру- [c.147]


Смотреть страницы где упоминается термин Особенности химических реакций макромолекул: [c.158]    [c.229]    [c.97]   
Смотреть главы в:

Макромолекулярные реакции -> Особенности химических реакций макромолекул




ПОИСК







© 2025 chem21.info Реклама на сайте