Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Общая кинетика и механизм инициирования и роста цепи

    Систематическое развитие винилойой полимеризации как отрасли науки началось после того, как выяснилось, что некоторые вещества способны сокращать или устранять неностояныый индукционный период полимеризации и увеличивать скорость образования полимера. В соответствии с их общим ускоряющим влиянием эти вещества — перекиси, азосоединения, а также основания и кислоты Льюиса — получили общее название катализаторов и были классифицированы как действующие по свободнорадикальному, катионному и анионному механизмам. Изучение кинетики полимеризации и аналитическое определение строения концевых групп образующихся полимеров в дальнейшем, однако, показало, что эти катализаторы не остаются неизменными в ходе реакции, а становятся частью образующихся полимеров, фактически вызывая инициирование цепной реакции. По мере того как все более тщательно изучался механизм. этих цепных реакций, становилось очевидным, чТо в образовании макромолекулы полимера винилового типа имеется по существу четыре стадии инициирование, рост цепи, передача цепи и обрыв цени. [c.11]


    Качественное исследование катионной полимеризации стирола было проведено Штаудингером [1—3] и другими [4, 5] в 20-х — начале 30-х годов, однако первым количественным кинетическим исследованием были работы Вильямса [6—8], посвященные реакции, катализируемой хлорным оловом. С тех пор было сделано много работ. Результаты наиболее важных количественных исследований представлены в табл. 1. После рассмотрения образуемых стиролом карбониевых ионов и влияния сокатализатора на реакцию будет обсуждена полимеризация в присутствии различных катализаторов в неполярных и полярных средах, в особенности с точки зрения механизма инициирования, роста цепи и общей кинетики процесса. Далее будут рассмотрены процессы обрыва и передачи цепи для всех систем вместе. [c.203]

    Изложенные результаты показывают, что гетерогенность оказывает значительное влияние на механизм инициирования и кинетику полимеризации. Почти во всех случаях полимеризация в граничных слоях протекает с большей скоростью, чем в объеме. Это связано с адсорбционным взаимодействием с поверхностью и изменением условий роста и обрыва цепи . При поликонденсации кроме этих общих факторов существенную роль играет селективная сорбция компонентов на границе раздела. Все это позволяет считать, что для достижения оптимальных свойств полимерного наполненного материала к каждой системе полимер — наполнитель должны быть подобраны условия отверждения. [c.62]

    В настоящее время можно предположить лишь общую последовательность процессов при катионной полимеризации эпоксидов, механизм большей части которых мало изучен. Инициирование включает по меньшей мере две стадии быстрое образование комплекса мономер — катализатор и более медленное превращение такого комплекса в собственно активный центр роста цепи. Механизм и кинетика второй стадии, на которой происходит раскрытие эпоксидного кольца по реакции первого или второго порядка, не ясны. Нет единого мнения относительно природы активного центра полимеризации, который может иметь оксониевую, карбониевую или некую промежуточную форму. Это вносит, естественно, неясность в механизм продолжения цепи в зависимости от того, оксониевую или карбониевую природу имеет активный центр, реакция будет следовать механизму или 8])г1 соответственно. Процессы ограничения роста цепи включают гибель активных центров, их дезактивацию во времени, приводящую к остановке реакции при наличии в системе мономера, а также различные типы передачи цепи, механизм которых постулируется лишь на основе аналогий и косвенных данных. В процессы передачи цепи следует включить реакции образования циклов. В связи с отсутствием новых экспериментальных данных при обсуждении механизма этих стадий трудно добавить что-либо к изложенному в уже упоминавшихся ранее обзорах. Можно лишь предположить, что в актах передачи существенную роль должны играть реакции гидридного перемещения как с участием карбониевых, так и окс-карбониевых центров. В актах гибели может оказаться важной реакция отрыва атома галоида от анионного конца цепи с образованием С—Х-связи [c.331]


    IV. ОБЩАЯ КИНЕТИКА И МЕХАНИЗМ ИНИЦИИРОВАНИЯ И РОСТА ЦЕПИ [c.216]

    Реакции ионной полимеризации весьма сложны и многообразны, поэтому до настоящего времени не существует единой теории этих процессов, однако можно отметить ряд общих особенностей, не характерных для свободнорадикальных процессов. Например, функция катализатора не ограничивается участием только в реакции инициирования, катализаторы активно влияют также и на реакции роста цепи, участвуют в реакциях переноса и обрыва цепи, что определяет кинетику всего процесса в целом. По сравнению со свободнорадикальными процессами ионная полимеризация обычно характеризуется более низкими значениями энергии активации, что приводит к менее заметному влиянию температуры процесса на скорость образования полимера. В то же время ионные реакции чрезвычайно чувствительны к природе реакционной среды и ее изменение влияет не только на скорость отдельных этапов процесса, но и на механизм реакции. Реакции ограничения роста цепи при ионной полимеризации чаще всего являются актами переноса цепи, поэтому катализатор сохраняет свою активность и при полном исчерпании мономеров. [c.140]

    Механизм и кинетика элементарных актов. Общая схема А. п., как и всех других процессов полимеризации, включает в себя акты инициирования (2), роста (3), передачи (4) и обрыва (5) цепи  [c.75]

    Скорость инициирования ионной полимеризации нередко описывается системой последовательных обратимых реакций с участием инициатора, мономера, растворителя и в отдельных случаях дополнительных агентов, способных к образованию комплексов с инициатором. Это отражает схема (1-6), которая распространяется не только на растущие цепи, но и па инициаторы ионной природы. Конкретный механизм реакций инициирования сказывается на кинетических порядках этой стадии процесса полимеризации и влияет на суммарные порядки. Для инициирования порядки по мономеру и инициатору укладываются в интервалы 1 -Ь-2 и 1/га -=-1 соответственно. Дробный порядок по инициатору в ионных системах может быть обусловлен двумя причинами — его ассоциированным состоянием и диссоциацией на свободные ионы. Кинетика начального периода полимеризации определяется отношением скоростей реакций инициирования и роста. Достаточно быстрое инициирование обеспечивает практически одновременный ввод всех активных центров, при медленном инициировании их концентрация возрастает в ходе процесса. В последнем случае полимеризация протекает с индукционным периодом, в течение которого скорость расходования мономера постепенно возрастает. Дальнейший ход кинетической кривой зависит прежде всего от интенсивности реакций обрыва. Среди процессов ионной полимеризации существует немало примеров полного отсутствия таких реакций, но общим правилом это не является. [c.24]

    В первых трех главах книги обсуждены наиболее общие особенности понных систем и процессов ионной полимеризации. В частности, дана характеристика активных центров реакций инициирования и роста, приведена классификация элементарных актов и затронута проблема реакционноспособности полярных мономеров. Две последующие главы сосредоточены на механизме и кинетике анионной и катионной полимеризации. В последней главе рассмотрен механизм формирования структуры полимерной цепи. [c.4]

    Существуют реакции двух типов с участием больших хмоле-кул — реакции, ведущие к их образоваш1Ю, и реакции, ведущие к их распаду. К реакциям первого типа относятся процессы полн-конденсации и полимеризации здесь рассмотрены только последние. Среди многочисленных работ в области высокополимеров в течение последних десятилетий были проведены обпшрные исследования по механизму и кинетике цепных реакций, происходящих при полимеризации в настоящей главе в общих чертах описаны результаты этих работ. Речь идет об образовании длинных цепей, содержащих сотни или тысячи звеньев поэтому стадия роста цепи будет сравнительно быстрой, а первоначальное образование активных частиц, радикалов или ионов, — относительно медленным и чувствительным к условиям реакции. По этой причине после описания кинетики и экспериментальных значений констант скорости рассмотрены различные механизмы инициирования реакции, т. е. возникновения активных частиц. Имеется два способа инициирования — образование свободных радикалов и образование ионов. Эти частицы получают при помощи инициаторов, т. е. веществ, которые связываются химически с конечным продуктом реакции, или при помощи катализаторов в собственном смысле слова. Радикалы, конечно, могут быть также получены посредством радиации. [c.169]

    Вследствие того что в первых работах оказалось невозможным продемонстрировать сокаталитическое действие воды, для этой реакции был сначала предложен механизм полярной связи. Однако теперь показано, что вода является сокатализатором, и механизм полярной связи отвергается. Предположение о том, что инициирование — реакция второго порядка, скорость которой зависит как от концентрации стирола, так и от концентрации хлористого алюминия, для объяснения кинетики необходимо дополнить, также предположив обрыв с участием мономера [71]. В настоящее время, однако, можно дать объяснение, сходное с предложенным для катализа хлорным оловом, четыреххлористым титаном, серной и ди- и трихлоруксусной кислотами, связанное с идеей быстрого инициирования при относительно медленном росте цепи. В частности, катализируемая хлористым алюминием реакция имеет много общего с реакцией под действием серной кислоты [70], и не только в том, что процесс прекращается до достижения 100%-ной степени превращения, но также и в том, что время, требующееся для получения данной доли конечного выхода, постоянно при постоянной температуре. При сокатализе водой механизм реакции можно было бы ориентировочно представить следующим образом  [c.227]



Смотреть главы в:

Катионная полимеризация -> Общая кинетика и механизм инициирования и роста цепи




ПОИСК





Смотрите так же термины и статьи:

Инициирование

Инициирование и рост цепи

Механизм инициирования при

Рост цепи



© 2025 chem21.info Реклама на сайте