Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Информация генетическая фенотипическая

    Нуклеиновые кислоты, прежде всего ДНК, являются материальными носителями наследственной информации и определяют видовую специфичность организма, сложившуюся в ходе биологической эволюции. Важно уяснить, что носителями наследственной (генетической) информации являются именно пуриновые и пиримидиновые основания, подобно тому, как боковые заместители аминокислот определяют пространственное строение и функциональные свойства белков. Сочетания трех рядом стоящих нуклеотидов в цепи ДНК называются триплетами оснований, или кодонами. Сумма всех кодонов ДНК составляет генетический код (см. главу 12). Молекула ДНК организована в клетке в структурные единицы — гены. Гены, в свою очередь, локализованы в хромосомах, которые находятся в ядре животных или растительных клеток. Именно ген содержит информацию, определяющую фенотипический признак орга- [c.285]


    Успехи такого масштаба отодвигают в настоящее время на задний план генетические работы, непосредственно не связанные с этими основными проблемами. По сравнению с достижениями в изучении ДНК успех генетических исследований фенольных соединений следует считать незначительным. Более того, вероятно, что до тех пор, пока не будут расширены подходы, из таких исследований можно получить сравнительно мало информации, представляющей общебиологический или генетический интерес. В этой главе рассматриваются классические работы по генетике фенольных соединений и некоторые работы последних лет. До настоящего времени большинство исследований по генетике фенолов было посвящено многоатомным фенолам флавоноидного типа, т. е. водорастворимым пигментам цветков. Целью исследований обычно было описание в классических терминах Менделя генетических механизмов образования окрасок цветков, присущих отдельным видам или родам. В ранних классических работах и позднее, основываясь на данных такого рода исследований, фенотипические эффекты связывали со специфическими химическими изменениями в флавоноидных соединениях. В других исследованиях были открыты некоторые механизмы, управляющие количественным наследованием этих пигментов, и, наконец, в них часто содержался анализ генного управления характера распределения некоторых флавоноидных соединений. Независимо от этого были изучены пути биосинтеза флавоноидных структур в исследованиях с помощью меченых атомов. Небольшое число работ посвящено изучению ферментов биосинтеза флавоноидов, хотя в течение нескольких лет успешно ведутся интенсивные исследования по энзимологии синтеза ароматических веществ в микроорганизмах. По мнению автора, генетические исследования до сих пор не дали (или дали очень мало) определенных данных, которые позволили бы точно описать отдельные стадии биосинтеза фенолов [c.140]

    Эволюционная адаптация. Наиболее длительный процесс приспособления к среде — тот, который зависит от приобретения новой генетической информации, детерминирующей новые адаптивные фенотипические признаки. Это процесс эволюционной адаптации, который, разумеется, требует многих поколений. [c.27]

    Определение цистрона связано еще с одним важным понятием генетики — доминантностью признака. В классической генетике высших организмов всегда происходит выбор при фенотипическом проявлении одного из двух аллеломорфов каждого признака. При этом проявляется доминантная аллель, но природа доминанта совершенно непонятна. В биохимической генетике бактерий природа доминанта вполне ясна. Если диплоидная зигота одновременно содержит два аллеломорфа цистрона А, А" и А , означающих способность и неспособность к синтезу определенного фермента, то в итоге клетка будет содержать генетическую информацию о синтезе этого фермента, т. е. свойство синтезировать фермент будет всегда доминантным. [c.314]


    Экспрессия гена — проявление (самовыражение) функционирования генетической информации, записанной в гене, в форме рибонуклеиновой кислоты, белка и фенотипического признака. [c.468]

    Наследственным или генетическим материалом всех организмов является ДНК, в которой в форме генетического кода зашифрована информация о всех белках организма. Передача и реализация фенотипической информации о синтезе белков осуществляется в результате транскрипции и трансляции. Такой путь передачи информации (ДНК РНК Белок) получил название центральной догмы биологии (см. главу 11). [c.539]

    В главах 10-17 мы рассматривали способы действия генов-то, как генетическая информация, присутствующая в зиготе, направляет развитие организма и определяет его фенотип. Синтез белка, кодируемого структурным геном, и проявление признака обычно разделены длительной последовательностью процессов. Конечный результат фенотипического проявления гена зависит как от условий среды, так и от действия других генов. На действие гена оказывают влияние не только регуля- [c.334]

    Транспозицией называется перемещение участка хромосомы либо внутри той же хромосомы (рис. 21.2), либо в другую хромосому. Интересный класс транспозиций связан с функционированием подвижных генетических элементов, обсуждавшихся в гл. 8. Они бывают двух типов инсерции-относительно короткие последовательности ДНК, которые несут информацию, необходимую для собственной транспозиции, и транспозоны, которые помимо информации, необходимой для транспозиции, кодируют фенотипические признаки. [c.54]

    Выбор тестов для анализа полностью зависит от исследователя. Более предпочтительными являются тесты, предназначенные для получения информации о единичном свойстве, т. е. об элементарном признаке. Элементарным признаком называется таксономическая характеристика двух или нескольких состояний, которая является логически неделимой, если только не меняется метод кодирования [5, 16]. В нумерической таксономии основными источниками информации для классификации и идентификации являются фенотипические признаки, генетические же признаки (гл. 22) в рамках указанного подхода обычно не используются. [c.101]

    Все наследуемые дефекты ферментов гликолиза в эритроцитах, приведенные в табл. 4.3 и на рис. 4.3, вызывают практически неразличимые по клиническим проявлениям варианты гемолитической анемии. Один из источников генетической неоднородности-сходство или даже совпадение фенотипических проявлений мутаций в генах, кодирующих разные ферменты данного пути метаболизма. Тот же вывод можно сделать, анализируя информацию, полученную при сравнении изученных случаев болезни накопления гликогена. [c.19]

    Фенотипическое проявление мутаций. Поскольку мутация — эта стабильное изменение наследственного материала клетки, она реализуется по тем же каналам, как любая другая генетическая- информация. На этом пути судьба мутаций различна. Некоторые из них не влияют на признаки организма, оставаясь молчащими . Такие мутации могут не проявляться в процессе трансляции, т. е. не приводить к измеиению аминокислотной последовательности синтезируемого белка. В другом случае изменение может происходить вдали от активного центра фермента и потому не сказываться на его функции. Если же мутация приводит к изменению в активном центре или резко влияет на его структуру, это сразу сказывается на функциях фермента. Диапазон изменения функциональной активности фермента в этом случае велик от незначительного понижения активности до полной ее потерн. В последнем случае это часто приводит к гибели организма. [c.130]

    Значение данных о строении ДНК для систематики прокариот огромно, поскольку о сходстве и различии организмов судят, сравнивая в целом их генетические аппараты, в которых записана вся информация о признаках организма. Однако, как показал опыт использования этого метода для систематики бактерий, при установлении филогенетических связей между группами степень сходства бактериальных геномов может служить лишь в качестве одного из тестов для определения отношений между организмами наряду с использованием для этой же цели совокупности морфологических, цитологических, физиолого-биохимических признаков. Сопоставление информации о генетическом аппарате с фенотипической характеристикой, проведенное для ряда бактериальных форм, показало, что не всегда между ними наблюдается соответствие, т. е. сходство фенотипов организмов не всегда коррелирует со сходством в строении и гомологичностью их ДНК. [c.139]

    Много этапов различных преобразований информационных макромолекул и белков отделяют генетическую информацию, заключенную в конкретных генах, от ее реализации в соответствующих фенотипических признаках клеток и организма, которые обладают этой информацией. Такая реализация требует точной координации в функционировании многих генетических систем организма на всех основных уровнях экспрессии генов. Многоступенчатый и сложный характер регуляции функционирования генов, особенно у высших организмов, накладывает большие ограничения на возможности получения полноценной экспрессии рекомбинантных генов в гетерологичных искусственных генетических системах. [c.36]


    Генетическая система. Не зная об особенностях развития кукурузы, очень трудно разобраться, как с помощью одних только классических генетических и цитогенетических методов были открыты контролирующие элементы. Каждое зерно в початке кукурузы содержит зародыш и многоклеточный эндосперм, в котором имеется большое количество питательных веществ, используемых во время прорастания (рис. 10.18). Зародыш и эндосперм образуются в результате отдельных слияний гаплоидных ядер, но обычно содержат одинаковую генетическую информацию. Эти пары мужских и женских ядер являются сестринскими и образуются в результате митотических делений гаплоидных предшественников. Следовательно, мутации в клетках зародышевой линии, которые приводят к наблюдаемым фенотипическим изменениям в эндосперме, к счастью, сохраняются в зародыше зерна, что позволяет проводить дальнейшие исследования. Каждое из нескольких сотен зерен в початке представляет собой результат отдельного скрещивания, поэтому удается выявлять редкие мутации в клетках зародышевой линии. [c.242]

    Изучение морфологических признаков различных гаплоидов показало, что они, как правило, сходны с теми диплоидными растениями, от которых произошли, и отличаются от них лишь более мелкими размерами клеток и вегетативных органов. Однако есть немало исключений из этого правила, при которых гаплоиды по ряду признаков не уступают исходным диплоидам. Разнородность гаплоидных форм, возникающих из одного и того же однородного диплоидного материала, зависит от многих причин и прелсде всего от сочетания хромосом при мейозе, в результате которого клетки с одинарным набором хромосом иногда получают геном, настолько богатый генетической информацией, что фенотипически не уступают исходным диплоидным растениям. В других случаях полученное клеткой сочетание хромосом не мол<ет обеспечить л изнеспособности возникающего из нее организма и он погибает улсе на первых фазах развития. [c.123]

    Долгое время не было ясно, каков механизм модификацион-ных изменений, могут ли они наследоваться и какова их роль в эволюции организмов. В настоящее время показано, что модификация — изменение, происходящее на уровне фенотипа и не затрагивающее клеточный генотип. Все признаки клетки определяются ее генотипом, но в определенных условиях она пользуется не всей заложенной в ней генетической информацией, количество которой гораздо больше, чем необходимо клетке для существования в конкретных условиях. Реакция клетки на изменение внешних условий приводит к проявлению каких-то новых признаков, свойств, которые не обнаруживались в исходной культуре. Однако информация, необходимая для проявления этих признаков, обязательно содержится в клеточном геноме. Модификация есть результат пластичности клеточного метаболизма, приводящего к фенотипическому проявлению молчащих генов в конкретных условиях. Таким образом, модификационные изменения имеют место в рамках неизменного клеточного генотипа. [c.146]

    Фенотипическое проявление мутаций. Поскольку мутация — это стабильное изменение наследственного материала клетки, она реализуется по тем же каналам, что и любая другая генетическая информация. На этом пути судьба мутаций раапична. Некоторые [c.149]

    СТО оказываются миссенс-мутациями (мутациями с изменением смысла), в которых последовательность кодирующего триплета оснований после замены кодирует уже другую аминокислоту. Вследствие вырожденности генетического кода аминокислота, кодируемая мутантным геном, часто оказывается сходной с той, которая кодировалась родительским триплетом, в результате чего формируется фенотип ( leaky ) лищь с частично нарушенной функцией (определяемой обычно белком). Такие штаммы имеют тенденцию спонтанно ревертировать к родительскому типу, проявляя таким образом генетическую нестабильность и частичную физиологическую неполноценность. Значительная часть мутаций с заменой оснований представляет собой нонсенс-мутации (бессмысленные мутации), характеризующиеся тем, что кодирующий какую-либо аминокислоту триплет превращается в триплет, не кодирующий никакой аминокислоты. В этом случае синтез соответствующего белка прерывается на измененном триплете, а образующийся незавершенный фрагмент белковой молекулы, как правило, не способен выполнять предназначенной исходному белку функции. Поэтому нонсенс-мутации фенотипически выражены, а способность ревертировать у них сохраняется. Мутации со сдвигом рамки возникают в случае вставки или делеции одного или нескольких оснований в молекулу ДНК- При этом происходит сдвиг рамки при считывании закодированной информации и как следствие — изменение последовательности аминокислот в белке мутантного штамма. [c.10]

    Из протопластов, выделенных из одного листа картофеля, регенерируются растения с сильно различающимися признаками, кототые иногда не похожи ни друг на друга, ни на исходное растение. Поскольку считается, что все соматические клетки каждого многоклеточного организма содержат идентичную генетическую информацию, постарайтесь объяснить, в чем причина разного фенотипического проявления предположительно идентичных протопластов. [c.528]

    Биометрическая модель создает еще большие трудности. Наследуемость Ь и генотипическая и фенотипическая дисперсии сами зависят от генотипической изменчивости в популяции и в процессе эволюции популяции непрерывно изменяются. Законы изменения этих переменных непременно должны учитывать генотипическую детерминацию фенотипа, в том числе степень доминирования генов, взаимодействие между ними и относительные частоты аллелей в локусах, контролирующих признак, на который действует отбор. Таким образом, хотя уравнение (2) выглядит как фенотипический закон, для обеспечения достаточного числа параметров в него нужно ввести переменные генотипического состояния. Поскольку передача признаков из поколения в поколение зависит от генетических законов, этот процесс нельзя достаточно полно описать при помощи одних только фенотипических понятий, и попытки, подобные предпринятым Слаткином (1970), имели успех только в крайне упрощенных условиях с очень ограниченной приложимостью. Необходимо подчеркнуть, что для некоторых целей животноводства и растениеводства вполне достаточно предсказаний, сделанных на основе уравнения (2), потому что значение h может изменяться в процессе эволюции очень медленно по сравнению со средней для фенотипа, особенно если признак, находящийся под действием отбора, контролируется большим числом генов, каждый из которых обладает слабым эффектом. Для долгосрочного предсказания успеха при отборе или для установления предела селекционного процесса уравнения (2) недостаточно. Достаточное множество переменных состояния для описания эволюционного процесса в популяциях должно включать информацию [c.29]

    Интенсивные исследования последних лет принесли и продолжают приносить новые знания о механизмах, обеспечивающих высокоэффективную и высокоспецифическую экспрессию генов [15]. Эту информацию успешно используют для эффективной экспрессии рекомбинантных генов в гомологичном или гете-рологичном генетическом окружении [117]. После рассмотрения основных принципов конструирования векторов для клонирования ДНК можно перейти к обсуждению проблемы экспрессии клонированных генов в искусственных генетических системах. Именно экспрессия клонированных генов является одной из основных задач генной инженерии и биотехнологии. Действительно, функциональную роль отдельных генов и их частей в живом организме можно понять и оценить лишь на основании экспрессии этих последовательностей, т.е. по фенотипическому проявлению их потенциальных биологических возможностей. Кроме того, крупномасштабная наработка биотехнологических продуктов требует осуществления эффективной экспрессии конкретных генов в искусственно созданных условиях. Для получения полноценной экспрессии клонированных генов используют экспрессирующие векторные системы, принципы конструирования которых в настоящее время хорошо разработаны. [c.104]

    Для всех клеток, за исключением клеток членистоногих, репликация тогавирусов является летальным событием. При этом в клетке почти полностью подавляется синтез макромолекул и очень быстро блокируется функционирование Na/K-АТРазы [29]. Однако известны многочисленные хорошо документированные случаи, когда устанавливается персистентная инфекция. Большинство из них характеризуется низким содержанием вируса или дефектными формами вирусного генома. Некоторые из дефектных вирусов фенотипически проявляются как температурочувствительные мутанты или мутанты по типу бляшек. Другие имеют свойства дефектных интерферирующих (ДИ) частиц [11, 95]. ДИ-частицы представляют собой обычный продукт большинства систем вирус—клетка они содержат делеционный вариант вирусного генома, в котором сохраняются участки, необходимые для репликации нуклеиновой кислоты и ее упаковки в вирионы. У большинства ДИ-частиц нормальные последовательности генома перетасованы, но в то же время определенные области сохраняются. У SFV и SIN последние состоят из З -конца и последовательности около 5 -кон-ца РНК [44, 55, 57, 82] (рис. 21.2). Наиболее интересная последовательность недавно обнаружена у двух ДИ-РНК SIN. На 5 -конце РНК этих ДИ-частиц последовательности практически идентичны тРНК Р клеток крысы [57]. Возможное значение этой структуры обсуждалось ранее в связи с репликацией РНК. В присутствии ДИ-РНК репликация нормальной вирусной РНК подавлена и репликация вируса оказывается угнетенной. При этом инфекция становится намного менее цитопатической и клетки могут выжить. Персистентная инфекция такого типа обычно оказывается временной она заканчивается либо полным излечением (т. е. потерей всей вирусной генетической информации), либо самопроизвольным кризисом с обильной продукцией вируса и цитопатическим действием. Эти состояния имитируют некоторые вирусные заболевания (хотя в последних важную роль в подавлении размножения вируса играют иммунные защитные механизмы), а иногда, возможно указывают на существование необычных типов патогенности. [c.360]

    Таким образом, интернейрон с дендритными разветвлениями в одном поле нейропиля будет получать направленную информацию о течениях" воздуха от клеток определенного сенсорного ряда. Синаптические связи с конкретным интернейроном устанавливают те сенсорные волокна, которые пересекают его дендритное поле. Следовательно. специфически детерминированный нейронный контур складывается в результате взаимодействия двух систем — рецепторной с ее проецирующимися в ЦНС афферентами и дендритных полей интернейронов центральной нервной системы, являющихся мишенью для этих афферентов. Что же направляет отростки сенсорных нейронов точно к их мишеням в ходе онтогенеза Есть предположение о наличии специфического химического градиента, создающего сЬетоаГАп11у в росте нервных волокон и формировании паттерна их связей, так что сенсорные нейроны как бы снабжаются биохимическими этикетками, которые соответствуют их положению в рецептивном поле. Эта гипотеза оживляет взгляды Рамон-и-Кахаля, и на ее основе предполагается, что в растущем эпидермисе насекомых существует генетически детерминированный монотонный градиент, который может быть прочитан созревающими нервными клетками, так что их дифференцировка направляется этим градиентом (а он в таком случае составляет суть так называемой позиционной информации). Если предложенная гипотеза правильна, поведение нейрона в развитии определяется его позицией, и изменение этой позиции должно повлечь за собой изменения фенотипической его характеристики. У некоторых насекомых такое "перемещение нейрона как во взрослом , так и в незрелом состоянии легко осуществить — как в пределах одного индивида, так и между индивидами и даже между индивидами разных видов. [c.199]

    Проблемы механизмов переноса, перераспределения и экспрессии генетических признаков, долгое время не находившие решения, с начала 50-х годов перешли на молекулярный и химический уровни. Как реплицируются и рекомбинируют молекулы ДНК Каким образом они сохраняются в последующих поколениях Каким способом информация, закодированная в ДНК, обеспечивает образование фенотипических продуктов-белков Как регулируется считывание информации, закодированной в ДНК, в процессе роста клеток или развития организма и при других физиологических состояниях Как нарушаются эти процессы при заболеваниях Эти и еще многие другие вопросы стояли в центре молекулярно-генетических исследований в течение последних 35 лет. Бурный прогресс в первые 20 из них был достигнут благодаря использованию систем прокариот и связан с цпен-тификацией молекулярных структур, участвующих в процессах хранения, поддержания, передачи и использования генетической информации. [c.30]

    Генетическая информация у всех клеток закодирована в виде последовательности нуклеотидов в дезоксирибонуклеиновой кислоте (ДНК). Первый этап реализации этой информации состоит в образовании родственной ДНК молекулы—рибонуклеиновой кислоты (РНК), которая в свою очередь участвует в синтезе специфических белков. Фенотипические признаки любого организма в конечном счете проявляются в разнообразии и количестве белков, кодируемых ДНК. Информационная связь между молекулами генетического аппарата — ДНК, РНК и белками—предетавлена на рис. 1.1. [c.38]

    В этой главе мы рассмотрим химические и физические характеристики ДНК, РНК и белков, поскольку секреты генотипических и фенотипических функций этих молекул скрыты в их молекулярной структуре и свойствах. Механизмы репликации, репарации и рекомбинации нуклеиновых кислот детально обсуждаются в гл. 2, а механизмы транс1фипции и трансляции в процессе эьхпрессии генетической информации-в гл. 3. [c.39]

    Фенотипические признаки клеток разных типов, а также одной и той же клетки в различных условиях зависят от количества и свойств продуцируемых ими структурных, каталитических и регуляторных белков. Регулироваться может какой-то ОДИН или несколько отдельных этапов считывания генетической информации при синтезе белка. У бактерий, например у Е. соН, образование белков регулируется главным образом содержанием мРНК, доступной для трансляции. Дополнительный способ поддержания нужной концентрации клеточных белков состоит в регуляции различных этапов трансляции, а также скорости деградации белков. Эукариотические клетки обладают более сложными механизмами регуляции белкового состава. Содержание мРНК в цитоплазме регулируется не только на уровне инициации транскрипции в ядре, но и на уровне процессинга первичных транскриптов и транспорта зрелых РНК в цитоплазму. Подобно прокариотам, эукариотические клетки тоже могут регулировать как трансляцию, так и скорость транспорта и деградации белков. [c.172]


Смотреть страницы где упоминается термин Информация генетическая фенотипическая: [c.487]    [c.510]    [c.93]    [c.27]    [c.232]    [c.74]    [c.40]    [c.185]    [c.34]    [c.29]    [c.15]    [c.262]    [c.40]    [c.56]   
Биологическая химия Изд.3 (1998) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Информация

Пол фенотипический



© 2025 chem21.info Реклама на сайте