Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нервный ростовой фактор

    Фактор роста нервов Повреждение нервной тканн [c.205]

    Фактор роста нерва также стимулирует поглощение уридина, образование полисом, синтез белков, липидов, РНК и потребление глюкозы. Благодаря этому он способствует росту и выживанию симпатических и сенсорных нейронов. NGF активирует рост аксонов и дендритов, осуществляя контроль за сборкой микротрубочек. Если антитела против NGF вводятся мыши, ее симпатическая нервная система дегенерирует. Роль NGF как трофического фактора можно проиллюстрировать на примере его способности индуцировать тирозингидроксилазу — ключевой фермент синтеза катехоламинов. [c.327]


    Фактор как долго может определяться са.мопроизвольно с помощью молекулярного механизма транскрипции и трансляции ДНК для нас же особый интерес представляют факторы сколько и где . Если сайт (т. е. клеточное окружение развивающейся козетки на пути от нервной пластинки к специализированному органу-мишени) влияет на экспрессию гена, то это предполагает ограничение генетической детерминированности организма. В самом деле, имеются доказательства того, что клетки влияют друг на друга в период развития. Это происходит либо при прямом контакте, молекулярный механизм которого не вполне ясен, либо при выделении химических сигналов, называемых факторами роста нервов. Последние мы будем обсуждать в связи с термином трофизм, а механизм прямого контакта будет показан на примере образования и стабилизации синапсов. Следует отметить, что не только генетическая программа определяет окончательную структуру нейрональной сети, существенно также положение отдельной клетки в пространстве и времени. Именно последнее и помогло сделать следующий вывод геном человека содержит >10 генов, а число синапсов >10 (10 ° нейронов, каждый из которых имеет 10 синапсов, см. выше), так что маловероятно (хотя и нельзя считать совсем невозможным вследствие огромного разнообразия антител, продуцируемых ограниченным числом генов), чтобы специфичность каждого отдельного синапса программировалась определенным участком гена. Мы еще вернемся к этому важному вопросу при рассмотрении синаптогенеза, т. е. процесса образования и стабилизации специфических синапсов. Представляется вполне допустимым, что развитие нервной системы контролируется несколькими факторами генетическим, трофи- [c.319]

    Все это — модулирующие эффекты, влияющие на синтез медиатора и происходящие после определенной стадии дифференциации. Молекулярный механизм подобной модуляции еще неизвестен, участниками этого процесса являются медиатор, возможно, ионная среда и трофические факторы. Тирозингидроксилаза также индуцируется фактором роста нерва (МОЕ), который захватывается нервным окончанием при пиноцитозе и отсюда переносится к ядру клетки путем ретроградного аксонального транспорта. [c.322]

    Регуляция жизнедеятельности сложного многоклеточного организма в огромной степени зависит от химических сигналов, передаваемых от одних клеток к другим. Один из основных способов коммуникации — это секреция гормонов в кровоток. Значительно менее изучен процесс химического обмена информацией через межклеточные контакты (гл. 1, разд. Е, 3, в). Этот процесс лучше всего исследован на нервных клетках, и в настоящее время нейрохимия стала одним из основных направлений биохимии. Коммуникация между клетками играет большую роль в эмбриональном развитии и в дифференцировке тканей. Правда, рост и развитие клеток регулируются не только внешними, но и внутренними факторами последние определяются программами развития, закодированными в ДНК. В настоящей главе мы рассмотрим кратко как упомянутые вопросы, так и коммуникацию между организмами, т. е. биохимию экологических взаимосвязей. [c.316]


    В принципе механизм нейронной специфичности мог бы иметь универсальное значение и повсюду в нервной системе определять, какне клетки должны связаться друг с другом. На практике же (хотя для многих частей нервной системы уже получены убедительные данные в пользу нейронной специфичности) очень трудно точно установить, насколько велика роль такой специфичности в организации всей системы. Недавно, однако, был сделан важный шаг на пути к выяснению молекулярного механизма нейронной специфичности. С помощью моноклональных антител на поверхности клеток сетчатки куриного эмбриона был идентифицирован гликопротеин, который, подобно гипотетической метке нейронной специфичности, позволял определить принадлежность клетки к той или иной области сетчатки. Концентрация этого маркера в сетчатке плавно изменяется-на одном ее полюсе его в 35 раз больше, чем на другом, и он присутствует почти на всех клетках сетчатки. Градиент концентрации маркера можно обнаружить уже на четвертый день эмбрионального развития, и он сохраняется в течение всего периода роста сетчатки. Возможно, что это и есть проявление позиционной метки, которую клетки приобретают уже на ранней стадии развития эмбриона и которая служит впоследствии направляющим фактором при образовании нервных связей. [c.148]

    Все это привело к тому, что были разработаны специальные среды определенного химического состава, используемые для культивирования клеток различных типов. В этих средах известен каждый из компонентов. Наряду с низкомолекулярными веществами они, как правило, содержат один или несколько различных белковых факторов роста, необходимых клеткам для выживания и пролиферации в культуре например, некоторым нервным клеткам как в культуре, так и в [c.204]

    Трофические факторы исключительно важны для образования и выживания нервной системы. Они могут быть белками,, ионами (Са +, Ма+, К+ или др.), нейромедиаторами или гормонами. Наилучшим образом изучен фактор роста нерва (N0 ) — белок, стимулирующий рост нейритов в ганглии, активирующий ферменты (например, тирозингидроксилазу) и необходимый для выживания симпатической нервной системы. [c.349]

    Ткани-мишени выделяют нейротропные факторы, регулирующие рост и выживание нервных клеток [58] [c.358]

    Изучение факторов роста—одно из наиболее быстро развивающихся направлений на стыке современной биологии и медицины. Многие факторы роста в настоящее время выделены и частично охарактеризованы (табл. 57.7). До недавнего времени для исследований были доступны лишь небольшие их количества. Однако теперь клонированы гены целого ряда факторов роста и благодаря методам генной инженерии стало возможным получать ДНК факторов роста в больших количествах. Известные в настоящее время факторы роста влияют на клетки различных типов, например на клетки крови, нервной системы, мезенхимы и эпителия. Их воздействие на [c.363]

    На процессы роста нейронов могут оказывать влияние многие химические агенты, которые воздействуют на мембрану или на органеллы нервной клетки. Кроме того, имеются некоторые специфические факторы, которые ускоряют рост определенных типов нейронов. Наиболее известным из них является фактор )оста нервов (ФРН). ФРН — это белок с мол. массой 130 000. Зго главная нейроактивная субъединица — полипептид, у которого аминокислотная последовательность сходна с установленной для инсулина. Это позволяет предположить, что у этих двух веществ в процессе эволюции был один общий предшественник. ФРН обычно секретируется производными нервного гребня и стимулирует рост аксонов соответствующих клеток. Он играет существенную роль в росте и созревании нейронов спинальных и симпатических ганглиев (см. рис. 10.2). Кроме того, ФРН является для экспериментатора полезным инструментом при изучении роста отростков в культурах клеток и тканей. [c.242]

    Другие факторы роста действуют не как гормоны, а как локальные химические медиаторы. В процессе индивидуального развития выживание и рост нейронов определенных типов зависит от фактора роста нервов (ФРН, димер из двух идентичных полипептидных цепей длиной 118 аминокислот), который, как полагают, секретируется клетками-мишенями этих нейронов. Необходимость ФРН для выживания развивающихся нейронов симпатической нервной системы доказывают наблюдения троякого рода 1) инъекция антител анти-ФРН новорожденным мышам вызывает избирательную гибель симпатических нейронов (рис. 13-10) 2) многие незрелые симпатические нейроны способны неограниченно долго жить в культуре, не содержащей других клеток, если добавить в феду ФРН, а без ФРН погибают за несколько дней 3) развивающиеся симпатические нейроны, которым не удалось образовать синап- [c.255]

Рис. 13-11. Представленный здесь ОПЫТ показывает, что фактор роста нервов (ФРН) может влиять на направление роста нервных окончаний. Если поместить симпатические нейроны в средний отсек культуральной чашки, разделенной на три отсека барьерами из силиконовой смазки, то клетки вытягивают нервные окончания только в один из боковых отсеков-в тот, который содержит ФРН. Рис. 13-11. Представленный здесь <a href="/info/1780201">ОПЫТ показывает</a>, что <a href="/info/98568">фактор роста нервов</a> (ФРН) может влиять на <a href="/info/1876124">направление роста</a> <a href="/info/510193">нервных окончаний</a>. Если поместить <a href="/info/103579">симпатические нейроны</a> в средний отсек культуральной чашки, разделенной на три отсека барьерами из <a href="/info/23696">силиконовой смазки</a>, то клетки вытягивают <a href="/info/510193">нервные окончания</a> только в один из боковых отсеков-в тот, который содержит ФРН.

    По длине пептидных цепей гормоны гипофиза значительно различаются между собой. Некоторые из них относятся к белкам среднего молекулярного веса. Например, гормон роста человека имеет мол. вес. 21 500 и характеризуется высокой специфичностью гормоны роста из других источников не могут его заменять. Гормон, стимулирующий функцию щитовидной железы (тиреотропии, ТТГ), представляет собой гликопротеид с мол. весом 28 000. С другой стороны, гормоны нейрогипофиза (задней доли гипофиза) вазопрессии и окситоцин являются простыми пептидами, построенными всего лишь из 9 аминокислотных остатков (собственно, из восьми, если считать цистин одной аминокислотой рис. 2-2). Как указывает уже само название, нейрогипофиз состоит из нервной ткани, секреторная функция которой находится под непосредственным контролем центральной нервной системы. Вазопрессии является основным фактором, регулирующим объем циркулирующей крови и артериальное давление на уровень секреции этого гормона оказывает влияние стресс. Окситоцин действует на гладкие мышцы матки при родах, а также служит триггером лактации. Выделение молока из молочных желез в определенной мере зависит от сосательных движений младенца, под влиянием которых происходит рефлекторное высвобождение окситоцина в кровоток. [c.321]

    Из Окинавской губки рода Нугио% Увеличивает синтез фактора роста нервных клеток и может обеспечить подход к лечению таких нервных нарушений, как болезнь Альцгеймера [c.178]

    Биологическое действие -МСГ, как и других форм, не ограничивается меланотропной активностью, на которую прежде всего было обращено внимание, что и нашло отражение в названии семейства этих гормонов. Помимо влияния на пигментацию кожи и волос они обнаруживают ряд других активностей. Так, -МСГ является сильнодействующим натрий- и калий-уретическим фактором, влияет на выделение гормона роста, проявляет стероидогенную, липолитическую активность, оказьшает положительное влияние на нервную и мышечную системы. Инъекция -МСГ млекопитающим и человеку вызьшает увеличение частоты сердечных сокращений, гиперчувствительность и ряд поведенческих актов. Клинические данные показывают, что гормон повышает чувствительность сетчатки и улучшает адаптацию глаза к темноте. Имеются сведения, которые указывают на роль меланотропинов в качестве нейротрансмиттеров и нейромодуляторов центральной нервной системы. Отмечаются положительные эффекты МСГ на внимательность и память [198-206]. [c.363]

    Цитоплазма нейрона находится в постоянном движении. Это движение, называемое аксональным транспортом, осуществляет функциональную связь между телом клетки и ее ядром, с одной стороны, и нервным окончанием, с другой стороны, часто находящемся на расстоянии 1 м и даже более. Аксональный транспорт обусловливает рост и функциональную активность аксона, его регенерацию после очаговых поражений и адаптацию синаптической активности. Различают антеро- и ретроградный аксональный транспорт, так что различные компоненты могут проходить не только от тела клетки к синапсу, но и в обратном направлении. Существует медленный аксональный поток (1— 4 мм/сут), промежуточный (15—50 мм/сут) и быстрый (200— 400 мм/сут). Каждый вид молекул переносится с характерной для него скоростью. Тубулин, субъединицы нейрофиламентов, актин и миозин транспортируются медленно митохондрии с промежуточной скоростью мембранные белки, гликопротеины, гликолипиды, ферменты синтеза медиаторов и медиаторы — быстро. ДНК, РНК н ганглиозиды не транспортируются. Ретроградный транспорт удаляет продукты деградации синапсов, переносит ферменты, а также субстраты, поглощенные пресинаптической мембраной, например фактор роста нервов, токсин столбняка и нейротропные вирусы. [c.316]

    Наиболее изученный трофический фактор — фактор роста нерва (NGF), открытый Леви-Монталсини и Гамбургером в 1950 г, [5]. Этот фактор стимулирует рост периферических сенсорных н симпатических нейронов и необходим для выживания зрелого синаптического нейрона. NGF стимулирует также разветвления образований аксонального типа эмбриональных клеток ганглия в культуре (рис. 11.3,6). Этот эффект используется для его биологического тестирования и выделения. NGF найден во многих нервных и иных тканях, но не в крови. [c.325]

    Плазматические мембраны нейронов и мембраны некоторых не нейрональных клеток содержат специфические рецепторы (рецепторы ЫОР), которые связывают N0 вначале с низким, а затем с высоким сродством. Было показано, что рецепторы с высоким сродством образуют кластеры и вместе со связанным ЫОР попадают в клетку при эндоцитозе и транспортируются внутри клетки частично к лизосомам (где происходит их деградация), частично к ядру. При их поглощении нервным окончанием рецептор и ЫОР переносятся путем ретроградного аксонального транспорта. Подобные процессы могут происходить и при других типах гормональной регуляции и поэтому КОР служит своеобразной моделью гормонов и факторов роста. Механизм действия ЫОР в клетке не изучен. В ответ на действие ЫОР наблюдалось фосфорилирование белка и поэтому было постулировано участие в этом процессе сАМР-зависимой протеинкиназы. Идентифицировано несколько субстратов КОР-активированного фосфорилирования (среди них тирозингидроксилаза, рибосомальный белок 56, гистоны Н1 и НЗ и не-гистонные ядерные белки), но не показана связь между этими процессами и физиологической функцией МОР. [c.326]

    Первым из нейротропных факторов был идентифицирован фактор роста нервов (ФРП), и в настоящее время он лучше всего изучен. Этот фактор был открыт случайно в ходе экспериментов с трансплантацией тканей и опухолей куриным эмбрионам. Трансплантаты одного вида опухолей необычайно обильно иннервировались и вызывали значительное разрастание определенных групп периферических нейронов в близлежащих областях. Такому влиянию подвергались нейроны только двух категорий сенсорные и симпатические (подкласс периферических вегетативных нейронов, регулирующих сокращение гладкой мускулатуры и функцию экзокринных желез). Экстракты из опухоли стимулировали также рост нейритов в культуре этих нейронов. Дальнейшие исследования показали, что в культуре другой ткани-слюнной железы сампа мыши -такой же стимулирующий фактор образуется в огромных количествах. Эта игра природы пока еще не разгадана, так как образование ФРП клетками слюнной железы не имеет видимой связи с главной функцией этого фактора, но так или иначе открылась возможность получать чистый ФРП в количествах, достаточных для выяснения его химической природы и изучения его функций. Оказалось, что активность связана с белком-димером, содержащим две идентичные полипептидные цепи из 118 аминокислотных остатков каждая. После того как ФРП был вьщелен в чистом виле. появилась возможность получать антитела, блокируюшие его действие. Если антитела к ФРП ввести мыши, у которой развитие нервной системы еще не закончено, то большая часть симпатических нейронов и некоторые сенсорные нейроны погибнут. [c.358]

    Токсическое действие. М. является необходимым микроэлементом для живого организма. Обнаруживается он в составе многих белков, ДНК, гепарина и более чем в ста жизненно важных ферментных системах организма. Он либо входит в состав комплекса ферментов (например, пируватдекарбоксилазы, супероксиддисмутазы), либо является активатором многих ферментов, либо может замещать другие металлы, в частности магний, в клеточных ферментных реакциях. Этим обусловлено его участие в различных видах обмена он необходим для формирования соединительной ткани и костей, роста организма, эмбрионального развития внутреннего уха, репродуктивной функции, функции центральной нервной системы и эндокринных желез. Дефицит М. у человека маловероятен. На крысах показано, что недостаточность М. не сопровождается снижением его содержания в цельной крови, но в лимфоцитах л ряде тканей уровень М. падает. Считается, что микроэлементу присущи степени окисления +3 и +2. Избыточное поступление М. может служить причиной развития как острой, так и хронической интоксикации. М. является политропным ядом, поражая многие органы и системы. Однако специфическим для М. является нейротоксическое действие. Он поражает центральную нервную систему, где вызывает органические изменения экстрапирамидного характера, в тяжелых случаях — паркинсонизм. Угнетение биосинтеза катехоламинов связывают с влиянием М. на окислительные ферменты, локализованные на митохондриях, где имеет место накопление М. Избирательное накопление М. в головном мозге считают основным детерминрфующим фактором психоневрологической симптоматики хронического отравления М. Нарушение в биосинтезе катехоламинов оказывает влияние на поведение и изменения со стороны психики, которые имеют место при хроническом марганцевом отравлении. Но М. является и политропным ядом, поражающим, помимо нервной системы, легкие, сердечно-сосудистую и гепатобилиарную системы, оказывает влияние на эритропоэз, эмбрио- и сперматогенез, вызывает аллергический и мутагенный эффекты. В токсическом действии соединений М. основное значение принадлежит металлу, анион изменяет этот эффект несущественно. [c.464]

    Кумагаи С., Горение, пер. с япон.. М., 1979 Математическая теория горения и взрыва, М., 1980. А. Г. Мержанов. ГОРМОНЫ ЖИВОТНЫХ, органические в-ва, выделяемые железами внутр. секреции в кровь и тканевую жидк. биол. регуляторы важнейших ф-ций организма животных и человека (обмена в-в, роста, полового развития и др.). Секреция Г. ж. эндокринными железами контролируется центр, нервной сист. и гуморальными факторами (биологически активным в-вами, содержащимися в крови, лимфе и тканевой жидк.). По хим. строению различают след, группы Г. ж. производные аминокислот (напр., Ь-адреналин), белково-пептидные (напр., инсулин, секретин, вазопрессин) и стероидные гормоны. В крови и моче содержатся маого-числ. продукты метаболизма Г. ж., многие из к-рых также обладают гормональной активностью. Г. ж. выделяют из прир. источников или синтезируют. Нек-рые из них — лек. ср-ва (напр., инсулин, адренокортикотропии). [c.141]

    И как ОНН попадают в нужные места Нервная система ставит перед нами еще одну проблему как образуются правильные соединения между нервными иетками В большинстве других областей эмбриологии можно рассматривать клетки как точечные объекты, каждый из которых занимает определенное положение и обладает определенными внутренними свойствами. Но сущ. ность нейрона в том и состоит, что он не является точечным объектом он необычайно вытянут и снабжен длинным аксоном и дендритами, соединяющими его с другими клетками. Фунющя нейронов состоит в регулировании и интеграции различных видов активности организма, и эта функщ1я определяется их соединением. Если соединения ошибочны, работа нервной системы будет нарушена. Мы уже можем объяснить, как образуются нейроны различных типов и как их тела уиадьшаются в регулярную структуру для этого мы привлекаем те же принщшы, которые применимы и к остальным системам тела. Тем не менее упорядоченный рост аксонов и дендритов и образование правильной системы синапсов представляют собой явления иного порядка. Передний конец растущего аксона или дендрита ползет примерно так же, как и мигрирующая клетка его можно назвать мигрирующим органом неподвижной клетки. И движения такого мигрирующего органа регулируются частично теми же факторами, что и движения мигрирующей клетки (контактными воздействиями и др.), но, когда мы рассматриваем его взаимоотношения с телом иетки и с другими нервными волокнами и его способность образовывать синапсы, перед нами встают новые проблемы, требующие нового подхода. Поэтому мы не будем здесь углубляться в вопросы построения нервной системы-высшего продукта индивидуального развития,-мы вернемся к этим вопросам в главе 18. [c.126]

    Субстраты, по которым продвигаются конусы роста в живом организме, плохо изучены, так же как и факторы, направляющие рост и контролирующие ветвление нейритов в условиях нормального развития. Однако существует один вид контактного контроля, важная роль которого ясно продемонстрирована как in vivo, так и in vitro,-направляющее действие других нервных волокон. Конусы роста прикрепляются к уже существующим нейритам и передвигаются вдоль них. Поэтому первые отрастающие нейриты играют роль пионеров, за которыми позже могут следовать другие. Так как существует сильная адгезия между нейритами и между нейритом и конусом роста, нервные волокна у взрослого животного оказываются сгруппированными в плотные параллельные пучки, или фасцикула. Таким же путем [c.136]

    Инозит необходим для роста микроорганизмов, нормального развития и жизнедеятельности животных. Он является липотропным фактором. Инозит может быть предшественником образования в тканях растений галловой кислоты, дубиЛьных веществ, р-иононового кольца, встречающегося в составе каротинов и витамина А. Инозит является важным добавочным фактором и для животных. При его отсутствии нарушается функция нервной системы, желудочно-кишечного тракта, выпадает шерсть, воспаляется кожа (дерматит), ослабляется зрение. Он обладает липотропным действием, так как используется для биосинтеза фосфолипидов инозит сфатндов), способствующих окислению жирных кцслот. Инозит повышает активность амилазы и способствует превращению урацила в цитозин. [c.151]

    Развитие нервной системы удобно разделить на три этапа, которые частично перекрываются. Па первом этапе нейроны образуются в соответствии с собственной программой клеточной пролиферации и вновь образуюш,иеся клетки мигрируют из мест своего рождения , чтобы упорядоченным образом расположиться в других участках. Па втором этапе от клеток отрастают аксоны и дендриты, кончики которых продвигаются с помощью конусов роста Конусы роста перемешаются по строго определенным путям, направляемые главным образом контактными взаимодействиями с поверхностью других клеток или с компонентами внеклеточного матрикса. Пейропы, предназначенные для связи с разными мишенями, ведут себя так, как если бы они обладали разными, только им присущими особенностями (нейронная специфичность), что может выражаться в различных свойствах клеточной поверхности, позволяющих конусам роста выбирать разные пути. В конце своего пути конус роста встречается с клеткой, с которой он должен образовать синапс, и оказывается под влиянием нейротропных факторов, выделяемых этой клеткой. Эти факторы регулируют ветвление аксона и передвижение конусов роста вблизи ткани-мишени и, кроме того, когггролируют выживание нейронов, которым принадлежат конусы роста. С помощью этих двух эффектов нейротропные факторы, такие как фактор роста нервов (ФРП), регулируют плотность иннервации тканей-мишеней. Па третьем этапе развития нервной системы, который будет рассмотрен в следующем разделе, образуются синапсы, а затем схема связей уточняется с помощью механизмов, зависящих от электрической активности. [c.362]

    Растениям, как и животным, необходима внутренняя координация функций, чтобы процессы роста и развития протекали упорядоченно и организм в целом адекватно реагировал на изменения внешней среды. Однако в отличие от животньгх у растений нет нервной системы, поэтому связь между их клетками чисто гуморальная, т. е. они могут использовать только химические координирующие факторы. В связи с этим растения отвечают на раздражители медленнее и ответ часто выражается только в изменении роста отдельных участков тела. Рост в свою очередь может приводить к движению того или иного органа. В этой главе мы сначала рассмотрим движение растений, а затем различные механизмы координации их функций. [c.244]

    Со времени открытия 5-окситриптамина (5-ОТ) прошло более 30 лет. За эти годы накопилось большое количество сведепий о его физико-химических и биологических свойствах. Стало известно, что 5-ОТ обладает чрезвычайно разнообразным действием иа функции нервной, сердечнососудистой, эндокринной и мочеполовой систем он оказывает влияние на деятельность органов дыхания, желудочно-кишечного тракта, печени, селезенки. Его считают не только нейромедиатором, но и одним из регуляторов внутриклеточного обмена веществ, кровяного давления, фактором роста, гемостатическим, анафилактическим и противолучевым агентом. Отмечено антидиуретическое действие этого амина и его влияние на проницаемость гистогематических барьеров. Кажется, нет другого биологически активного вещества со столь разносторонним действием. [c.179]

    Очевидно, в интактном организме ФРН действует так же, как и в культуре in vitro, т. е. как фактор выживания, определяющий, будут ли клетки жить или погибнут, и как локальный стимулятор активности конусов роста, регулирующий ветвление концевых участков аксона. Первая функция имеет особое значение в период развития, а вторая важна на протяжении всей жизни однако обе они приводят к одному результату с их помощью иннервация приспосабливается к потребностям мишени. Сейчас появляется все больше данных о существовании других нейротропных факторов роста, выполняющих такие же функции по отношению к другим видам нервных клеток (см. рис. 19-70). В следующем разделе мы увидим, что такие факторы, вероятно, играют важную роль в регулирующем влиянии электрической активности на развитие систем нервных связей. [c.361]

    Как уже отмечалось, примерно 50% мотонейронов зародыша погибает вскоре после образования синаптических контактов с мышечными клетками. Такую гибель лишних нейронов можно предотвратить, блокировав нервно-мышечную передачу (например, а-бунгаротоксином), или, наоборот, усилить, подвергнув мышцу прямой электрической стимуляции. Это позволяет предполагать, что электрическая активность мышцы регулирует образование в мышце нейротропного фактора, необходимого для выживания эмбриональных мотонейронов. Этот фактор, возможно, идентичен тому фактору, который, как полагают, вызывает рост аксонных окончаний по направлению к денервированной мышце. Когда мышца бездействует в результате блокирования синаптической передачи или из-за отсутствия иннервирующих аксонов, этот фактор образуется в больших количествах как сигнал о том, что клетка нуждается в иннервации. Электрическая активация мышцы под действием искусственных стимулов или в результате спонтанного возбуждения иннервирующих ее мотонейронов подавляет образование фактора, и часть незрелых мотонейронов зародыша гибнет в конкуренции за его оставшиеся малые количества. [c.367]


Смотреть страницы где упоминается термин Нервный ростовой фактор: [c.188]    [c.141]    [c.357]    [c.175]    [c.124]    [c.522]    [c.309]    [c.137]    [c.146]    [c.203]    [c.227]    [c.75]    [c.142]    [c.361]    [c.361]    [c.368]    [c.171]    [c.139]    [c.363]    [c.290]   
Аминокислоты Пептиды Белки (1985) -- [ c.387 ]




ПОИСК







© 2024 chem21.info Реклама на сайте