Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Индикаторы химические и электрохимические

    Цветные индикаторы очень удобны и в большинстве случаев дают при титровании вполне удовлетворительные результаты. Однако иногда применение их оказывается затруднительным или вовсе невозможным. Это относится, например, к титрованию мутных, окрашенных или очень разбавленных растворов слабых кислот и оснований. Кроме того, для некоторых реакций еще не найдены подходящие цветные индикаторы. Поэтому для нахождения точки эквивалентности при объемных определениях часто используют физико-химические методы. В ходе титрования наблюдают не изменение окраски индикатора, а изменение некоторых электрохимических показателей титруемого раствора электропроводности (кондуктометрическое титрование), окислительно-восстановительного потенциала (потенциометрическое титрование), силы тока (амперометрическое титрование) и т. д. Преимущество определения точки эквивалентности с помощью физико-химических методов состоит в том, что вместо визуального наблюдения за изменением окраски индикатора в этих случаях используют специальные приборы, дающие объективные показания. [c.333]


    Физик о-х и м и ч е с к и е индикаторы. Для определения точки эквивалентности можно измерять некоторые физико-химические показатели свойств растворов, наиример электропроводность и т. д. Такие индикаторы применяют при различных электрохимических методах анализа, которые рассмотрены подробнее в гл. 23. [c.271]

    В последнее время был получен обширный экспериментальный материал по электрохимическим и химическим свойствам хемосорбционных слоев на металлах. При этом были использованы измерения адсорбционных потенциалов, применены радиоактивные индикаторы и другие методы, позволяющие определить влияние адсорбционных слоев на кинетику электродных процессов. Так, например, было установлено, что адсорбция йода на платине сопровождается значительным проникновением его в глубь металла. Поскольку связь между металлом и адсорбированными атомами имеет дипольный характер, образование атомных слоев приводит к нарушению строения двойного электрического слоя вплоть до изменения знака потенциала. Характерно также заметное снижение емкости двойного слоя, вызванное созданием адсорбционных слоев. [c.348]

    Химические методы анализа не уходят в прошлое, меняется лишь форма их проведения вместо титрования вручную — автоматическое титрование, вместо визуального фиксирования конца реакции с помощью индикаторов —запись процесса прибором, измеряющим оптические или электрохимические свойства, и автоматический расчет результатов измерений. [c.422]

    Известен ряд способов, при которых нет необходимости удалять пенетрант с поверхности изделия. Не требуют удаления пенетранты, которые приобретают окраску или способность люминесцировать в результате химического или электрохимического взаимодействия с металлом в полости дефекта. Так, на поверхность контролируемого изделия наносится цветообразующий электролит, содержащий галоидные ионы, индикатор цвета и анодный ингибитор. Индикатор цвета реагирует с металлическими ионами внутри трещин и выявляет их окрашиванием. [c.676]

    Особенности аналитических ячеек промышленных приборов определяются тем, что ввод пробы, разбавителя, сброс продуктов титрования и промывание автоматизированы. При конструировании этих ячеек учитывают и то, что ячейки работают без наблюдения в течение длительного периода времени. Сосуды аналитических ячеек, когда это возможно, стремятся изготавливать из стекла или прозрачных пластмасс. Возможность непосредственного наблюдения процессов, происходящих в аналитической ячейке, дает большие преимущества, особенно при проверке и наладке прибора. Например, в этом случае можно, при электрохимических способах определения точки конца титрования, использовать для контроля индикаторы. Применение стекла, кро.ме того, желательно ввиду его химической стойкости и легкости очистки. Однако использование прозрачных материалов, в частности стекла, для изготовления сосудов аналитических ячеек не всегда возможно вследствие [c.117]


    Дополнительные сведения о распределении индикаторов, свободных от носителей, между твердой и жидкой фазами приведены в табл. VIB (соосаждение и осаждение на заранее приготовленных осадках), в табл. VW (химическое осаждение), табл. VIE (электрохимическое осаждение) и табл. VB (адсорбция на ионообменных смолах). [c.351]

    Определение pH имеет колоссальное значение как в технике, при химических превращениях, так и в медицине (кровь имеет pH 7,3—7,45). Любой значительный воспалительный процесс ведет к изменению pH крови. Обычно величину pH измеряют при помощи индикаторов — веществ, способных менять свою окраску в зависимости от кислотности среды (табл. 6). Современные измерения pH производятся при использовании электрохимических методов, точность которых составляет 0,01 единицы pH. При помощи индикаторов в титриметрическом анализе определяют количество кислоты или щелочи, израсходованное в процессе реакции. [c.133]

    Рассмотрим, что происходит, когда к раствору понемногу прибавляют какой-нибудь реактив. Состояние этого раствора в ходе протекающих химических реакций может быть охарактеризовано рядом последовательных кривых сила тока — потенциал, которые являются, следовательно, индикатором происходящих явлений. Химические реакции сдвигают кривые сила тока — потенциал, потому, что эти реакции изменяют электрохимические свойства растворенных веществ. Разберем лишь небольшое число примеров. [c.213]

    Значительный практический интерес представляет электрохимический синтез гидразина — важного полупродукта в производстве полиуретанов, химических реактивов, индикаторов и т. д. Химический способ получения этого продукта, основанный на окислении аммиака или карбамида гипохлоритом натрия, дорог и не дает возможности синтезировать гидразин с достаточно высокими выходами вследствие протекания побочных реакций. [c.94]

    Способ измерения Q с помощью химических, гравиметрических и других основан на последовательном включении его с электрохимической ячейкой в электрическую цепь. При этом через кулонометр и электрохимическую ячейку проходит во времени одинаковый по величине ток. При прохождении тока через кулонометр в нем протекает со 100 %-ной э. т. г. электрохимическая реакция. В результате протекающей в кулонометре электрохимической реакции происходит выделение определенного объема газа, изменение цвета раствора электролита за счет присутствия соответствующего индикатора или выделение на одном из электродов кулонометра твердой фазы. Измеряя выделившийся в результате электролиза объем газа и фиксируя изменение окраски раствора электролита или приращение массы рабочего электрода в кулонометре, можно рассчитать количество электричества, прошедшее через него и соответственно через электрохимическую ячейку с анализируемым веществом. Массу металла, выделившегося на электроде кулонометра в виде твердой фазы, можно определить электрорастворением при постоянном токе электролиза. По достижении полного растворения металла с поверхности электрода, которое регистрируют по резкому изменению его потенциала, фиксируют время электролиза. Количество электричества, затраченное на электрорастворение твердой фазы, соответствует Q, прошедшему через электрохимическую ячейку. Подобные куло-нометры получили название кулонометрических кулонометров. [c.24]

    Изучение электрохимического поведения радиоактивных изотопов имеет большое значение как с практической, так и с чисто научной точки зрения. С одной стороны, электрохимический метод применяется часто для решения задач прикладного характера, так как позволяет получать радиоактивные вещества в состоянии большой химической чистоты и является почти незаменимым для получения их в виде тонких и равномерных слоев, нанесенных на поверхность образца любой величины. С другой стороны, исследования электрохимии радиоактивных изотопов или микроколичеств вещества с помощью радиоактивных индикаторов могут служить надежным средством для определения химического состояния вещества в растворе, валентности элемента, растворимости его соединений и т. п. Кроме того, этот метод может помочь в получении сведений, проливающих свет на природу явлений, которые сопровождают образование первых слоев электро-осаждающегося вещества, и дать представление о структуре поверхности и т. д. [c.383]

    Разработанные к настоящему времени методы определения растворимости газов в жидкостях весьма многочисленны и разнообразны [1-6]. Общепринятой является классификация, предложенная Баттино и Клевером [1,3], которые взяли за основу разделения методов природу измеряемых величин и способ их измерения. Классифицированные по этому принципу методы делятся на физические и химические. Такая классификация является достаточно условной, поскольку, с одной стороны, химическими методами измеряется физический параметр -масса растворенного газа, а с другой - многие основанные на физических принципах методы относятся к арсеналу современной инструментальной аналитической химии. В этой связи мы предлагаем разделить существующие методы на термодинамические (волюмо-манометрические) и аналитические. Термодинамические (волюмо-манометрические) методы позволяют косвенным путем определять количество абсорбированного газа на основе измерения рУТ параметров парожидкостного равновесия и последующего термодинамического анализа системы пар - жидкость. Методы, относящиеся к этому классу, широко распространены. В наиболее совершенных конструкциях достигнут очень высокий уровень точности (погрешность 0,1% и ниже). Сюда относятся методы насыщения и методы экстракции. В первом случае обезгаженный растворитель насыщается газом при контролируемых рУГ-параметрах, а во втором - растворенный в жидкости газ извлекается и проводится анализ рУГ-параметров газовой фазы. В аналитических методах проводится прямое или косвенное измерение количества абсорбированного газа путем анализа жидкой фазы. Для этих целей применяются объемное титрование (химическе методы), газовая и газожидкостная хроматография (хроматографические методы), масс-спектрометрия, метод радиоактивных индикаторов, электрохимические методы (кулонометрия, потенциометрия, полярография). Аналитические методы (за исключением хроматографического и масс-спектрометрического) не обладают той общностью, которая присуща термодинамическим методам. Они используются для изучения ограниченного круга систем или при решении некоторых нестандартных задач, например для проведения измерений в особых условиях. Погрешность аналитических методов составляет, как правило, несколько процентов. Учитывая указанные обстоятельства, а также принимая во внимание изложенные во введении цели данного обзора, мы ограничиваемся рассмотрением лишь химических и хроматографических методов. [c.232]


    Значительный практический интерес представляет электрохимический синтез гидразина — важного полупродукта в про-язв одстве полиуретанов, химических реактивов, индикаторов и т. д. [c.193]

    Использование метода радиоактивных индикаторов путем прямого определения адсорбции через тонкие электродные пленки с помощью счетчика Гейгера может оказаться более полезным для химической характеристики адсорбированных промежуточных частиц, чем применение имеющихся в настоящее время электрохимических методов. Эта техника была удачно использована рядом авторов, например для измерения равновесной адсорбции реагирующих частиц (ионов и молекул) в двойном слое. [c.415]

    Метод измерения отражения и гашения флуоресценции можно также применять при ТСХ веществ, поглощающих УФ-излучение. Метод гашения флуоресценции позволяет определять только вещества с максимумом поглощения выше 240 нм, так как максимум возбуждения обычно используемого флуоресцентного индикатора находится около 280 нм. Сравнивая эти методы, можно сказать, что наилучшие результаты дает количественное детектирование по отражению по сравнению с пропусканием и гашением флуоресценции. Наиболее эффективным методом количественного анализа является измерение интенсивности флуоресценции веществ в слое сорбента. Это — высокоселективный, высокочувствительный (особенно при использовании лазерных флуоресцентных детекторов) метод анализа с широким интервалом линейной зависимости количество вещества — интенсивность флуоресценции, не зависящий от формы зоны. Широкие возможности метода флуоресцентного детектирования в ТСХ связаны с возможностями дерийатиза-ции веществ до или после ТСХ с превращением их в флуоресцирующие производные или инициированием флуоресценции разделенных веществ электрохимическими или химическими методами. [c.371]

    При переходе к таким металлам, как железо, никель, платина, значение образования хемосорбированных слоев делается еще больше. Советскими исследователями в последнее время был получен значительный материал по электрохимическим и химическим свойствам как кислородных слоев, так и слоев, образованных другими отрицательно заряженными атомами на этих металлах. При этом были использованы разнообразные методы измерение дифференциальной емкости и кривых заряжения, определение адсорбции при помощи радиоактивных индикаторов, измерение адсорбционных потенциалов, фотогальванического эффекта, определение влияния этих слоев на кинетику электродных процессов. [c.15]

    К химическим реакциям, применяемым в потенциометрическом титровании, предъявляют те же требования, что и в обычном титриметри-ческом методе. Индикатором же служит соответствующая электрохимическая реакция, позволяющая проследить за изменением концентрации титруемого вещества и называемая поэтому индикаторной. Электрод, на котором происходит индикаторный процесс и потенциал которого является функцией концентрации определяемого вещества, называют индикаторным. [c.108]

    Методы, основанные на зависимости интегральных физико-химических параметров металлов от их газосодержания. К этой группе относятся метод пробкового индикатора примесей (вьападение примесей и закупорка ими пористой пластины индикатора при понижении температуры расплава анализируемого металла) метод измерения электросопротивления, которое является функцией содержания примесей, в том числе и газообразующих в металлах и метод ЭДС с использованием твердого электролита (вариант электрохимического метода). В последнем случае твердоэлектролитные ячейки используют как для определения состава газовой фазы, экстрагированной из металла, так и непосредственно для определения кислорода в металлическом расплаве. [c.932]

    В кулонометрическом анализе используют два обш,епринятых приема. Первый заключается в том, что потенциал рабочего электрода поддерживают постоянным на уровне, обеспечивающем количественное окисление или восстановление определяемого вещества. При этом потенциале на электроде не должны протекать вторичные реакции с участием растворителя или других электроактив-ных компонентов образца. В этом случае первоначально протекает высокий ток, который быстро уменьшается практически до нуля в момент, когда анализируемое вещество удалено из раствора (см. рис. 19-6). Количество электричества, требуемое для электрохимического превращения анализируемого вещества, измеряют с помощью химического кулонометра или интегрированием кривой ток — время. Суть второго приема состоит в том, что через анализируемый раствор пропускают постоянный ток до тех пор, пока индикатор не укажет на завершение реакции. Количество элект- [c.37]

    В ходе электрохимического титрования наблюдают не изменение окриски индикатора, а изменение некоторых электрохимических показателей титруемого раствора электропроводности (кондуктометрическое титрование), окислительно-восстановительного потенциала (потенциометрическое титрование), диффузного тока (амперометрическое титрование) и т. п. Преимущество фиксирования эквивалентной точки с помощью физико-химических методов состоит в том, что в.место визуального наблюдения за изменением окраски индикатора в этих случаях используют специальные приборы, дающие объективные показания. [c.281]

    Несмотря на большое число исследований механизм коррозии металлов до сих пор окончательно не выяснен. Коррозия железа в присутствии воды и атмосферного кислорода может идти как путем обычных химических реакций окисления, так и в результате электрохимических сопряженных процессов анодного растворения металла и катодной кислородной или водородной деполяризации (1, 2]. Как показал А. Н. Фрумкин [2, 3], электрохимическая коррозия не обязательно связана с участием локальных элементов, а может происходить также на однородных поверхностях. В зависимости от металла, состава и pH раствора и условий протекания процесса коррозия осуществляется по трем путям. В электрохимической коррозии можно отличить кислородную деполяризацию от водородной по составу выделяющихся газообразных продуктов, как это, например, было сделано в ис- следовании [4]. Труднее отличать электрохимическую коррозию с кислородной деполяризацией от чисто химической, так как стехиометрическое уравнение суммарной реакции для обеих одинаково, хотя они имеют разные промежуточные ступени. Различие между ними становится доступным прямому наблюдению при применении тяжелого изотопа кислорода как изотопного индикатора. Электрохимический механизм с кислородной деполяризацией включает стадию образования гидроксильного иона (или воды) с участием атмосферного кислорода, которая, если не рассматривать промежуточных ступеней, может быть выраясена общим уравнением [c.222]


Смотреть страницы где упоминается термин Индикаторы химические и электрохимические: [c.385]    [c.10]    [c.18]    [c.376]    [c.18]   
Аналитическая химия висмута (1953) -- [ c.10 ]




ПОИСК





Смотрите так же термины и статьи:

Индикатор химический



© 2024 chem21.info Реклама на сайте