Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ современных измерений

    АНАЛИЗ СОВРЕМЕННЫХ ИЗМЕРЕНИИ [c.108]

    Определение индексов удерживания обычно лежит в основе качественного анализа. В основе количественного хроматографического анализа лежит измерение площади регистрируемого пика, которая пропорциональна концеитрации вещества в пробе. На современных приборах площадь пика определяется интегратором. При отсутствии интегратора площадь может быть определена как произведение высоты пика на его полуширину (ширина пика на половине высоты). [c.296]


    В основе большинства современных методов количественного анализа лежит измерение относительной интенсивности спектральных линий определяемого элемента и элемента сравнения, находящегося в той же пробе. Это вызвано тем, что интенсивность спектральной линии зависит от ряда неконтролируемых процессов (изменения условий испарения пробы и возбуждения спектров во время проведения анализа, регистрирующего устройства и др.). [c.106]

    Возможность автоматического измерения времени удерживания анализируемых соединений заложена в конструкции современных электронных интеграторов высшего класса, промышленный выпуск которых постоянно возрастает. Отметим, что при использовании электронных интеграторов и специализированных систем обработки результатов анализа для измерения времени удерживания важно обеспечить синхронизацию момента ввода [c.215]

    Исследование физико-химических свойств активного ила и анализ современных методов определения его концентрации показали возможность применения для этой цели оптических методов измерения. Концентрация биологических суспензий, в том числе активного ила, может быть определена по величине поглощения света, проходящего через кювету, наполненную исследуемой жидкостью. Для небольших концентраций в этом случае справедлив закон Ламберта — Бера  [c.128]

    В течение последних лет в практике спектрального анализа получил значительное распространение атомный абсорбционный спектральный анализ. В настоящее время по данной теме насчитывается несколько сот публикаций. Этот интерес не случаен. В ряде отношений атомно-абсорбционный метод предпочтительнее эмиссионного метода анализа. В частности, он открывает определенные возможности для решения основных задач современного анализа автоматизации измерений и освоения анализа сверхчистых материалов. [c.7]

    Определение pH имеет колоссальное значение как в технике, при химических превращениях, так и в медицине (кровь имеет pH 7,3—7,45). Любой значительный воспалительный процесс ведет к изменению pH крови. Обычно величину pH измеряют при помощи индикаторов — веществ, способных менять свою окраску в зависимости от кислотности среды (табл. 6). Современные измерения pH производятся при использовании электрохимических методов, точность которых составляет 0,01 единицы pH. При помощи индикаторов в титриметрическом анализе определяют количество кислоты или щелочи, израсходованное в процессе реакции. [c.133]


    Анализ современных требований к средствам измерений массы, обусловленных достижениями науки, техники, производства и сферы потребления, позволяет выделить некоторые общие направления, по которым идет совершенствование весоизмерительной техники, независимо от области ее применения повышение точности  [c.130]

    Анализ современного состояния отечественной и зарубежной измерительной техники дает основание считать, что дальнейшее развитие методов и средств технических измерений в химическом аппаратостроении будет идти по четырем основным направлениям (рис. 31) 12]. [c.152]

    В последние годы происходит активное внедрение автоматизированных систем измерения и учета количества горючего в резервуарных парках, имеющих высокую надежность. Анализ современных отечественных и зарубежных информационно-измерительных систем показывает, что наиболее перспективными методами определения количества горючего в резервуарах являются емкостной, магнитострикционный, радиоволновый (радиолокационный). [c.73]

    Кинетические. Основной подход к решению проблемы ускорения анализа — проведение измерений в кинетическом режиме, т. е. в течение первых минут взаимодействия антигена с антителом. Как показывают эксперименты, переход к кинетическим режимам обеспечивает сокращение времени анализа до нескольких минут, при этом чувствительность методов определяется в основном нижней границей детекции маркера. Правда, использование кинетических методов требует высокой точности по времени выполнения всех стадий проведения анализа. Добиться этого можно при переходе к биохимическим автоанализаторам — современным роботам с программным управлением. Такие роботы уже созданы рядом зарубежных фирм и их реализация позволит существенно повысить чувствительность и точность анализа. Другим подходом в автоматизации иммуноферментных методов является использование проточного инжекционного анализа, который существенно упростит его инструментальное оформление. [c.120]

    На заключительной стадии проведения ИФА осуществляется измерение каталитической активности ферментной метки. При наличии отработанной методики анализа регистрируемый при этом параметр однозначно соответствует начальной концентрации измеряемого соединения и служит характеристикой его содержания. Единицы, в которых выражается регистрируемый сигнал, могут быть различны и зависят от метода определения ферментативной актив-сти (например, спектрофотометрический, флуориметрический, электрохимический, люминесцентный и т.д.). На основании полученных данных оператор должен сделать вывод, присутствует ли анализируемое соединение в пробе, и если да, то в какой концентрации. Этот этап является крайне ответственным, и для того чтобы максимально снизить возможность субъективных оценок результатов анализа, современные регистрирующие приборы для проведения ИФА оснащены микропроцессорами, с помощью которых рассчитывают концентрацию определяемого соединения в соответствии с заданной программой. Но пока что в большинстве случаев количественная интерпретация результатов зависит от опыта сотрудника, проводящего анализ. [c.256]

    Анализ современных тенденций в моделировании процессов горения указывает на использование все более сложных кинетических схем вплоть до предела вычислительных возможностей ЭВМ с целью получения более полного и точного описания кинетики. Хотя на этом пути исследователя подстерегает целый ряд сложностей и иллюзий (в частности, увеличение размеров схемы не ведет к повышению точности описания, если в нее включаются недостаточно надежно измеренные реакции), тем [c.367]

    В данной книге, как общепринято в современной термодинамике, в качестве единицы массы всегда использовали моль. При составлении или анализе системы массы компонентов обычно определяют взвешиванием, т. е. в граммах. Так как масса компонента т,-, измеренная в граммах, связана с числом молей по уравнению [c.282]

    Важна также следующая особенность системы измерения показателей процесса — выдача результатов измерения в дискретные моменты времени. Так, современные хроматографы, устанавливаемые на потоке, выдают результаты анализа через 5— 15 мин после поступления в них пробы продукта, с большим запаздыванием поступают данные лабораторных анализов и т.д. [c.183]

    Прямое определение концентрации проводится гравиметрическим или масс-аналитическим методами. В современной химической кинетике эти методы почти полностью заменены физико-химическими методами, с помощью которых измеряют некоторый физический параметр, пропорциональный концентрации вещества. Например, в газовых реакциях прослеживают изменение давления газа в системе в ходе протекания реакции. Впрочем, предпосылкой использования последнего метода является разность в количестве молей исходных веществ и продуктов реакции тогда протекание реакции сопровождается заметным изменением давления. В последнее время для изучения газовых реакций используют масс-спектрометрический анализ, а также методы, основанные, в частности, на измерениях теплопроводности газов (например, газовая хроматография). [c.167]


    При определении количества вещества в пробе обычно выполняют несколько параллельных определений (п 2), которые характеризуются воспроизводимостью полученных результатов вследствие случайных ошибок и правильностью результатов, являющейся следствием систематической ошибки. При обработке результатов анализа пользуются методами современной математической статистики, разработанной для малого числа измерений. Оценку воспроизводимости измерений и правильности производят с помощью следующих величин  [c.194]

    Удерживаемый объем Уг и время удерживания /г, как уже говорилось ранее, являются качественными характеристиками хроматографируемых веществ в определенных условиях проведения опыта. Качественный анализ основан на измерении и сопоставлении этих величин. В современной газовой хроматографии существует несколько способов идентификации компонентов в сложной смеси. [c.214]

    Образование на поверхности электрода оксидной пленки, а также адсорбция на ней ионов или органических молекул изменяет толщину поверхностного слоя с1 и его коэффициент преломления га, а следовательно, параметры отраженного света А и 1 з. Анализ этих изменений, который обычно выполняют с помощью ЭВМ по специально разработанным программам, позволяет рассчитать соответствующие изменения й и п в исследуемой системе и связать их с образованием на поверхности электрода адсорбционного или фазового слоя. Современная техника позволяет регистрировать увеличение величины с1, составляющее всего 0,02 нм, т. е. фиксировать адсорбированное вещество, начиная с заполнений поверхности 0— 0,05. Полученные эллипсометрическим методом данные по адсорбции на ртутном электроде анионов С1 , Вг и 1 , а также некоторых органических веществ находятся в хорошем согласии с результатами электрокапиллярных и емкостных измерений. Широкое применение эллипсометрический метод получил при изучении оксидных слоев на различных электродах. [c.182]

    Качество основной и вспомогательной продукции химических производств, производимых химической промышленностью материалов, а также решение комплексных задач исследования в значительной мере зависят от аналитического контроля. При современном непрерывном превращении химических веществ в процесс - производства только применение экспрессных методов качественного и количественного анализа и методов обработки полученных данных обеспечивает оптимальное ведение производства. В настоящее время для ведения процесса уже непригодны классические ( ручные ) методы. анализа, проводимые в лаборатории, а также простое измерение физических свойств веществ (например, плотности, электропроводности) без дальнейшего их использования или измерение параметров процессов (давления, температуры). Важнейшими побудительными причинами автоматизации и внедрения техники в аналитический контроль являются технические и экономические требования к получению информации более высокой ценности (небольшая продолжительность анализа, лучшая селективность, более высокая точность и чувствительность методов аналитического контроля), а также необходимость снижения затрат рабочей силы и экономии мощностей. Внедрение техники в аналитический контроль осуществляют путем механизации, применения инструментальных методов контроля или автоматизации [А.1.1 —А.1.4]. [c.427]

    Основными ограничениями метода фотометрии пламени являются необходимость переведения анализируемых проб в раствор, сравнительно высокий уровень матричных эффектов и, как правило, одноэлементность анализа. Режим измерений эмиссии пламени предусмотрен в большинстве типов современных атомноабсорбционных спектрофотометров (см. раздел 14.3). Переход от измерений абсорбции к измерениям эмиссии достигается простыми переключениями на панели прибора. [c.364]

    Этот метод определения а , йу и ряда молекул был применен в работах Стюарта и Фолькманна (обзор результатов см. [59]). Однако полученные Стюартом и Фолькманном данные нельзя считать достаточно точными. Измерения производились в начале 30-х годов, когда возможности эксперимента значительно уступали современным. Следует отметить, что измерения степени деполяризации рассеянного света и постоянной Керра в газах вообше представляют собой нелегкую задачу. Для расчета по формуле (12, 7) нужно иметь данные о предельных величинах степени деполяризации (см. [69], стр. 38 и 105), т. е. о таких значениях Дг, которые могут быть получены при рассеянии света в идеальном газе. Ясно, что если даже для жидкостей измерения Д в 30-х годах были весьма неточны и противоречивы, то тем более они могли быть неточными для газов при малых давлениях. К. Ле-Февр и Р. Ле-Февр на основе анализа методики измерений Стюарта и Фолькманна пришли к выводу, что для паров бензола найденное из опыта значение постоянной Керра совпадает по порядку величины с ошибкой эксперимента [91] .  [c.108]

    Для большинства работ, не требующ их прецизионных измерений, можно по-прежнему применять дугу Пфунда и нормали длин волн, которые измерены для воздуха и приведены в литературе [11.9—11.13]. Анализ современного положения вопроса о нормалях дан Эдленом [11.4]. [c.281]

    Монография составлена нз оригинальных обзоров, посвященных важнейшим теоретическим и прикладным вопросам химии жидких кристаллов. Рассматриваются методы анализа и измерения основных физических параметров, фазовые равновесия в с1месях жидких кристаллов связь свойств жидкокристаллических соединений со структурой механизм генерации электрооптических эффектов в тонких слоях лсидкокристаллических материалов и связанные с этим электрохимические явления роль жидких кристаллов в биологии современные и перспективные области применения устройств с использованием жидких кристаллов. В приложении приводятся физические константы недавно синтезированных жидкокристаллических соединений. [c.2]

    Экспозиция. При проведении фотографического атом-но-абсорбционного анализа время экспозиции должно быть таким же, что и при проведении эмиссионного спектрографического анализа, то есть в общем случае, оно не должно превышать 30—60 сек. Исходя из этого, а также, учитывая целесообразность использования обычных спектральных фотопластинок, чувствительность которых, как известно, невысока, следует считать применение высокоинтенсивных спектральных ламп необходи.мым условием проведения атомно-абсорбционного спектрографического анализа. Современные достижения в развитии источников света и тенденции к повышению их яркости снимают вопрос об экспозиций с точки зрения выбора источника света и вопрос о выборе экспозиции сводится только к выбору оптимального промежутка времени,, в течение которого обеспечивалось бы достаточно плотное почернение резонансной линии. Время экспозиции не должно быть слишком мало с тем, чтобы не вносить ошибки в результаты анализа за счет неточности в его измерении. [c.59]

    Заключительный этап расчета состоит в вычислении коэффициентов приведенных вьппе разложений и, таким образом, в получении окончательных формул для коэффициентов переноса. Мак-Корт [152] развил вариационный принцип, на основе которого можно рассчитать коэффициенты переноса, однако расчет не завершил. Он проделал первую итерацию описанного выше разложения по а и получил вьфажения для коэффициентов в этом приближении. Он обнаружил, что вид коэффициентов сдвиговой вязкости, объемной вязкости и теплопроводности не отличается от найденных методом Ванг Чанг—Уленбека. Для коэффициентов вращательной диффузии 0 =1, 2, 3) и Л были получены новые выражения. Все другие коэффициенты в этом приближении оказались равными нулю. Интересная особенность всех этих расчетов состоит в том, что интегралы, входящие в выражения для новых коэффициентов, нельзя свести к интегралам, содержащим сечение рассеяния (11.4.8). Вернее, они содержат комбинации г-матриц и операторов момента импульса /. Появление таких новых сечений будет иметь серьезное значение для дальнейшего рассмотрения. Если бы озникла возможность измерить коэффициенты вращательной диффу-взии, то анализ этих данны дал бы гораздо больше информации о природе межмолекулярного взаимодействия, чем дают современные измерения коэффициентов переноса. Действительно, даже простой учет этих новых свойств значительно расширяет возможности получения информации из измерений коэффициентов переноса. К сожалению, на сегодняшний день не существует экспериментальных методов измерения плотности момента импульса и неясно, возможно ли оно во-обше. Правда, очень похожие эффекты наблюдаются в газе, находящемся в магнитном поле измеряя коэффициенты переноса в этих условиях, можно получать сведения, подобные только что описанным. [c.345]

    Огромный прогресс в развитии электроники и приборостроения нашел свое отражение в автоматизации анализа. Современный дискретный потенциометрический анализ программноуправляем и автоматизирован (см. [4, 14а, 36, 87, 113а, 127—131, 146] для прямой потенциометрии и [43, 86] для потенциометрического титрования). При таком анализе можно использовать одновременно несколько электродов значения потенциалов до 5 электродов могут быть одновременно считаны, преобразованы в цифровую форму и храниться на магнитной ленте в памяти ЭВМ для последующей обработки [156, 160]. Управляемые микропроцессорами иономеры в настоящее время стали широко доступными. Приборы такого класса способны не только хранить данные калибровки, обрабатывать результаты по требуемому методу и выражать их в соответствующих единицах измерения, но могут также вносить поправку на величину фона. При обработке данных широко распространены вычислительные методы (см. примеры по математической обработке данных методов добавок с помощью ЭВМ в разд. 5.2.3). Эти методы обычно осуществляются в диалоговом режиме [42, 43] и обеспечивают постоянную оптимизацию экспериментальных условий. Для учета отклонения зависимостей Грана от линейности разработан метод отброса неправильной функции (ОНФ) 120, 121], согласно которому всю совокупность экспериментальных данных подразделяют на частично перекрывающиеся интервалы подходящей ширины. Через значения потенциала каждого интервала строят линию линейной регрессии. Полученные таким образом прямые пересекают ось объемов (титранта [c.138]

    Повышение точности измерения массовых чисел при МС высокого разрешения чрезвычайно расширяет возможности анализа. Точные значения масс отдельных изотопов не целочисленны (1Н = 1,00782, = 15,99491, = 14,00307, = 31,97207), за исключением атомов С, масса которых принята за опорную в современной системе выражения атомных масс ( С = 12,0000), поэтому, определяя массу иона с точностью до 10 — 10 а. е. м., можно находить одновременно и его элементный состав. Очевидно, что таким способом можно различить и раздельно определить многие из соединений (I—I) — (I—VIII), точные молекулярные массы которых часто разнятся уже в первом или во втором знаке после запятой (исключая соединения I—II, I—III и I—IV). Основным вариантом анализа при высоком разрешении стала низковольтная МС, хотя применение фрагментной МС и в этом случае, безусловно, может способствовать углублению изучения состава (например, позволяет различить углеводороды I—II — I—V). Яркий пример, иллюстрируюш ий огромные возможности низковольтной МС высокого разрешения в исследовании состава нефти, можно найти в работе Э. Гальегоса и др. [312] (рис. 1.5). [c.39]

    Современные кулонометрические приборы включают все необходимые узлы, позволяющие проводить анализ как методом кулонометрического титрования, так и методом потенциостатиче-ской кулонометрии. К таким приборам относится хроноамперо-метрическая система СХА-1,1. В СХА входит программное устройство, задающее напряжение на электродах, потенциостат для поддержания электрических режимов на электродах, интегратор тока для измерения количества электричества и потенциометр для фиксирования конечной точки титрования. [c.165]

    Как и в газовой хроматографии, в современной жидкостной хроматографии применяют детекторы, позволяющие непрерывно фиксировать концентрацию определяемого вещества в потоке жидкости, вытекающей из колонки. В жидкостной хроматографии применяют также специальные коллекторы для сбора фракций с последующим их анализом. Однако непрерывное измерение концентрации с автоматической ее записью обладает неоспоримыми преимуществами перед пофракционным анализом. Успех современной жидкостной хроматографии наряду с другими факторами обеспечен именно созданием чувствительных детекторов непрерывного действия. [c.88]

    В части Б, написанной доц. К.-Х. Хекнером (термодинамика и кинетика) и проф. Р. Ландсбергом (электрохимия), мы ввели безразмерные переменные и пояснили преимущества их употребления. Кроме того, в главу, посвященную электрохимии, включен раздел, посвященный уравнению Лютера. Д-р В. Шмидт — автор первых разделов части В — написал дополнительный раздел по химии твердого тела, а в целом часть В сокращена. Некоторые дополнения внесены в главу Количественный анализ части Г. В эту часть внесены существенные изменения в соответствии с современными воззрениями. Главы Методы и проблемы анализа следовых количеств веществ и Теория измерений в аналитической химии паписаны заново. [c.7]

    В-четвертых, в современной кинетике, как и в других естественных дисциплинах, возрастает роль математических методов и инструментов. Широко используется самая разнообразная компьютерная техника для обработки результатов кинетических опытов. Все чаще кинетическая установка сочленяется с ЭВМ для оперативной обработки результатов кипетпческих измерений, т. е. идет непрерывный процесс математизации эксперимента, С другой стороны, для теоретического анализа и описания сложных многостадийных реакций широко используются математические методы, часто проводится численное решение соответствующей системы уравнений на ЭВМ. Накоплен известный опыт в области так называемых обратных задач химической кинетики, когда по совокупности исходных данных восстанавливают (конструируют) механизм сложной реакции в виде соответствующей схемы. Иными словами, современная кинетика все теснее переплетается и использует результаты соответствующих разделов математики теории диф( ренциаль-ных уравнений, графов и т. д. [c.368]

    Физические методы определения структуры молекул занимают теперь центральное место в арсенале средств, испол ьзуемых хими ками -органи ками. Элементарное знакомство с важнейшими из них осуществляется уже в общем курсе и практикуме по органической химии. Современные учебники по органической химии содержат основные сведений о физических методах структурного анализа, а иногда — примеры и задачи по интерпретации простейших спектров протонного магнитного резонанса, иноракрасных и электронных спектров. Для более глубокого изучения физических методов и систематического развития необходимых практиче-ск 1Х навыков служат специальные циклы лекций, лабораторные и семинарские занятия для студентов старших курсов и аспирантов. Литература на эту тему весьма многочисленна и разнообразна по содержанию и уровню изложения. Однако учебных пособий, которые служили бы для выработки и закрепления элементарных навыков истолкования спектральных данных и результатов измерений важнейших физических параметров молекул, явно недостаточно, особенно сборников примеров и упражнений с иллюстрациями, точно воспроизводящими в достаточно крупном масштабе подлинные спектры, полученные на современной аппаратуре. Такие пособия необходимы для тренировки визуального восприятия и интерпретации спектрограмм, оценки их качества, развития элементов зрительной памяти, очень облегчающих и ускоряющих расшифровку молекулярных спектров. Данная книга [c.3]

    Спектрометрический метод анализа отличается от спектрографического метода способом измерения выходного аналитического сигиала и основан на фотоэлектрической его регистрации. В основе спектральных методов с фотоэлектрической регистрацией спектров лежат те же зависимости, которые используются в визуальных и фотографических методах анализа. В современных приборах применяются такие радиотехнические схемы, которые представляют выходной сигнал как в виде i-рафнческой зависимости величины, пропорциональной иитенсивности спектральной линии от концентрации определяемого элемента, так и в виде цифровой записи. [c.111]


Библиография для Анализ современных измерений: [c.550]   
Смотреть страницы где упоминается термин Анализ современных измерений: [c.10]    [c.185]    [c.106]    [c.274]    [c.112]    [c.147]   
Смотреть главы в:

Успехи спектроскопии -> Анализ современных измерений




ПОИСК







© 2025 chem21.info Реклама на сайте