Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Родословные, анализ

Рис. 36.9. Анализ родословных в случае серповидпоклеточной анемии. В верхней части рисунка (А) показано начало гена 6-глобина с сайтами расщепления рестриктазой Mst II (f) у нормального (А) и серповидноклеточного (S) В-глобина. В результате расщепления ДНК здоровых индивидуумов рестриктазой Mst II образуются специфические фрагменты ДНК размером 1,15 и 0.2 т.п.н. Замена одного основания у больных серповидноклеточной анемией приводит к потере одного из трех Mst 11-сайтов в области гена и соответственно к появлению только одного специфического Mst П-фрагмента размером 1,35 т. п. н. Это различие в длине легко обнаруживается методом Саузерн-блоттинга ( ). (На данном рисунке положение фрагмента длиной 0,2 т. п. н. не указано.) Анализ родословных демонстрирует три возможных генотипа. АА-норма (О), AS-гетерозигота по гену серповидноклеточности (ЭП) и SS-гомозигота по гену серповидных эритроцитов ( ). Этот подход позволяет осуществлять пренатальную диагностику заболевания серповидноклеточной анемией и выявлять гетерозиготных носителей соответствующего гена ( 4). Рис. 36.9. Анализ родословных в случае серповидпоклеточной анемии. В <a href="/info/1006898">верхней части</a> рисунка (А) показано <a href="/info/1413216">начало гена</a> 6-глобина с <a href="/info/1325003">сайтами расщепления</a> рестриктазой Mst II (f) у нормального (А) и серповидноклеточного (S) В-глобина. В <a href="/info/116236">результате расщепления</a> ДНК здоровых индивидуумов рестриктазой Mst II образуются специфические фрагменты ДНК размером 1,15 и 0.2 т.п.н. Замена одного основания у <a href="/info/1356354">больных серповидноклеточной анемией</a> приводит к потере одного из трех Mst 11-сайтов в <a href="/info/101813">области гена</a> и соответственно к появлению только одного специфического Mst П-<a href="/info/366275">фрагмента размером</a> 1,35 т. п. н. Это различие в длине легко обнаруживается <a href="/info/1338361">методом Саузерн</a>-блоттинга ( ). (На данном рисунке положение <a href="/info/170825">фрагмента длиной</a> 0,2 т. п. н. не указано.) Анализ родословных демонстрирует три возможных генотипа. АА-норма (О), AS-гетерозигота по <a href="/info/1356123">гену серповидноклеточности</a> (ЭП) и SS-гомозигота по гену серповидных эритроцитов ( ). Этот подход позволяет осуществлять <a href="/info/587009">пренатальную диагностику</a> <a href="/info/1356358">заболевания серповидноклеточной</a> анемией и выявлять гетерозиготных носителей соответствующего гена ( 4).

    Анализ сцепления у человека классический метод родословных [c.193]

Рис. 16-33. Простой фрагмент родословной клеток и некоторые типы вариаций, которые могут происходить вследствие мутаций генов, контролирующих развитие. Анализ мутантных фенотипов позволяет определить в чем состояла нормальная функция мутировавших генов. Рис. 16-33. Простой фрагмент родословной клеток и <a href="/info/1491159">некоторые типы</a> вариаций, которые могут происходить вследствие <a href="/info/101531">мутаций генов</a>, контролирующих развитие. <a href="/info/1338587">Анализ мутантных</a> фенотипов позволяет определить в чем состояла <a href="/info/1407216">нормальная функция</a> мутировавших генов.
    Выяснение принципов наследования признаков у людей началось не с менделизма. Иной подход был сформулирован Гальтоном в работе Наследование таланта и характера (1865 г. [248]) и в более поздних его работах. По Гальтону, чтобы сделать вывод о наследовании определенных свойств личности, таких, как высокая работоспособность, интеллект и внешние данные, следует возможно более точно количественно оценить эти свойства и затем сопоставить полученные оценки для индивидов с известной степенью родства (например, для родителей и детей, сибсов или близнецов), используя статистические методы. При таком подходе невозможно объяснить механизмы наследования. В то же время он может быть намного более полезен при изучении человеческих характеров, чем анализ по Менделю анализу родословной в соответствии с законами Менделя препятствовало то обстоятельство, что большинство индивидуальных особенностей нельзя просто раз- [c.12]

    Идентификация индивидуальной хромосомы, в которой находится исследуемый ген,-это только первый этап картирования. Основной задачей являются установление порядка генов и их точная локализация. В некоторых случаях метод анализа родословных позволяет расположить на генетической карте хромосомы три и более маркеров. Использование более эффективных методов генетики соматических клеток может дать более точную информацию. Существенную помощь в таких исследованиях оказывают хромосомные перестройки (см. гл. 21). Далее мы рассмотрим примеры использования делеций, транслокаций или дупликаций для картирования генов. [c.301]

    На рис. 4 представлена родословная. Проведите ее анализ и определите характер наследования каждой из трех отмеченных аномалий. [c.51]

    Морфологические маркеры хромосом. Пары или кластеры сцепленных аутосомных генов (группы сцепления) невозможно соотнести с конкретными хромосомами на основе использования только формально-ге-нетического анализа родословных. Впервые собственно локализация гена в определенной хромосоме у человека была осуществлена следующим образом [629 855]. [c.198]


    Применение набора зондов, специфичных в отношении полиморфных участков ДНК, для анализа ДНК членов родословных с большим числом поколений откроет новые горизонты в генетике человека . [c.458]

    Для большинства этих болезней мультифакториальная генетическая модель с пороговым эффектом дает довольно адекватное описание типа наследования (разд. 3.6). Однако тщательный анализ фенотипов и родословных во многих случаях привел к выделению редких типов заболеваний с простыми способами наследования. Примеры таких болезней (к ним относится, скажем, Х-сцепленная умственная отсталость) приведены в табл. 5.28. Наши знания об индуцированных радиацией доминантных скелетных мутантах мыши свидетельствуют о том, что доминантные главные гены с очень неполной пенетрантностью и крайне вариабельной экспрессивностью встречаются гораздо чаще, чем это до сих пор предполагалось (разд. 3.6.2.5). Болезни этой категории несомненно поддерживаются в популяции новыми мутациями, и число больных может поэтому увеличиваться с ростом частоты возникновения соответствующих мутаций. [c.258]

    Рис. 1-17. к кому ближе человек, к горилле или орангутану Ответ на этот вопрос можно получить, проанализировав последовательности ДНК этих видов и построив родословную, представленную в верхней части рисунка. Для выяснения филогенетического родства между близкородственными организмами обычно используют митохондриальную ДНК, поскольку она эволюционирует примерно в 5-10 раз быстрее, чем ядерная ДНК. В нижней части рисунка приведена последовательность первых 75 нуклеотидов одного и того же гена (митохондриальный ген, кодирующий субъединицу NAD-дегидрогеназы) для каждого из видов Цветными буквами отмечены участки, по которым горилла и орангутан отличаются от человека. Прямоугольники под нуклеотидными последовательностями обозначают аминокислоты в соответствующих белках. Названия аминокислот, если они отличаются от соответствующих аминокислот человека, также выделены цветом. Проведенный анализ показывает, что последовательность гориллы отличается от последовательности человека на 10%, а орангутана - на 17%. Предполагая, что эти различия обусловлены случайными мутациями, появляющимися с одинаковой частотой в линии каждого вида, можно вывести родословную, показанную на [c.25]

    Анализ родословных чрезвычайно полезен для установления типа наследования специфического состояния, однако не дает никакой информации об ассоциированном с данным заболеванием гене, о биологической основе нарушения или — в случае аутосомного заболевания — о хромосомной локализации гена. Более того, не всегда можно определить, является ли заболевание наследственным. Во-первых, не у всех лиц, несущих дефектный ген, про5шляются симптомы заболевания (неполная пе-нетрантность). Во-вторых, симптомы (фенотип) могут варьировать от слабых до ярко выраженных (варьирующая экспрессивность). В-третьих, один и тот же фенотип может обусловливаться дефектами в совершенно разньгх генах (генетическая гетерогенность). В-четвертых, в некоторых случаях альтернативные формы (аллели) одного гена могут приводить к разным фенотипам. В-пятых, из-за небольшого размера семей со случаями исследуемого заболевания приходится собирать данные о большом числе родословньгх, чтобы сделать вывод о природе этого заболевания. [c.442]

    Технология рекомбинантных ДНК, чаще называемая генной инженерией, революционизировала биологию и оказала огромное влияние на клиническую медицину. До разработки методов рекомбинантных ДНК наследственные болезни человека изучали с помощью анализа родословных и исследуя аномальные белки. Однако во многих случаях, когда конкретный вид генетического повреждения установить не удается, эти подходы оказываются малоэффективными. Новая технология позволяет адресоваться за нужной информацией непосредственно к молекуле ДНК. В настоящей главе рассмотрены основные концепции, на которых базируется технология рекомбинантных ДНК, ее применение в клинической медицине. В конце главы помещен краткий словарь-справочник. [c.35]

    При анализе родословных в одних семьях обнаруживается тесное сцепление заболевания с геном-маркером, тогда как в других семьях эти гены сегрегируют независимо. Примером может служить сцепление одного из локусов доминантного эллиптоцитоза с геном Rh в хромосоме 1. [c.232]

    Статистический анализ. В большинстве случаев анализ сцепления намного труднее. Обширные родословные, подобные приведенным на рис. 3.24,-не правило, а исключение. Большинство семей состоит только из родителей и детей. В этом случае проблема заключается в том, что фаза сцепления обычно неизвестна двойная гетерозигота может быть ЛВ/аЬ цис) или АЬ/аВ транс). Когда аллели распределены в популяции равномерно, оба типа ожидаются примерно с одинаковыми частотами. Индивиды АВ/аЬ будут формировать гаметы в отношении [c.195]

Рис. П.3.1. Модельная родословная с транслокациями. Анализ приведен в табл. П.3.7 [501а]. Рис. П.3.1. Модельная родословная с транслокациями. Анализ приведен в табл. П.3.7 [501а].
    На основе мини-сателлита интронной последовательности миоглобина Джеффри создал зонд, узнающий гипервариабельную ДНК [1795]. В разных хромосомах человека обнаружено много гипервариабельных участков. Уровень гетерозиготности в небольшой популяции, исследованной в это время, был весьма высоким и достигал почти 100%. Анализ инбредной родословной из 54 индивидов, относящихся к 4 поколениям, показал, что гетерозиготные полосы наследуются согласно законам Менделя. Интересно, что с помощью этого [c.289]


    Ген, ответственный за цветовую слепоту (дальтонизм), был локализован в Х-хромосоме в 1911 году. Особенности наследования генов, сцепленных с Х-хромосомой, позволили отнести к этой группе сцепления более чем 100 локусов. Хромосомная локализация аутосомных генов была впервые проведена в 1968 году. Определено расположение локуса, кодирующего антигены групп крови Даффи, которые, подобно антигенам группы ABO и другим антигенам крови, находятся на поверхности эритроцитов. Сравнение наследования изучаемого гена с распределением аберрантной хромосомы 1 показало, что он локализован в этой хромосоме. С тех пор на основании анализа родословных определены группы сцепления для 70 генов человека. Картирование многих из этих генов стало возможным после того, как было показано их сцепление с другими генами, локализацию которых удалось установить методами генетики соматических клеток. Примером этого служит картирование гена резус-фактора, впервые открытого в 1939 году. В 1971 г. изучение родословных показало, что ген Rh сегрегирует сцепленно с геном РЕРС, кодирующим пептидазу С. Годом позже при изучении соматических клеток ген РЕРС был локализован в хромосоме 1. Таким образом, стала известной группа сцепления и для гена Rh, кодирующего резус-фактор. В настоящее время картировано около 500 аутосомных генов, причем 100 из них картировано за последние 12 месяцев. Подавляющее большинство этих генов локализовано методами генетики соматических клеток. [c.294]

    Коэффициент инбридинга Р в различных популяциях. В табл. 6.18 приведены частоты кровнородственных браков в различных популяциях. В этой таблице приведены браки между двоюродными сибсами (1-С) и значения Р, вычисленные на основе имеющихся данных Сведения получены при анализе родословных пар, заключивших кровнородственный брак. В зависимости от метода оценки значение коэффициента инбридинга Р может быть в той или иной степени занижено по следующим причинам. [c.345]

    Анализ родословных не позволяет установить хромосомную локализацию гена того или иного заболевания, если только этот ген не находится на Х-хромосоме. Однако можно исследовать сцепление между геном данного заболевания и полиморфными ПДРФ- или STRP-локусами, идентифицируя последние с помощью соответствующих зондов. Этот подход дает наилучший результат в том случае, когда заболевание имеет четкие симптомы, его наследование носит однозначный характер и известна степень его пене-трантности. [c.456]

    Предлагаемый вниманию советского читателя труд, написанный рядом авторов под редакцией М. С. Ньюмена, посвящен пространственным эффектам в органической химии. По существу, предметом книги является новая—динамическая—стереохимия, ведущая родословную в большой степени не от классической структурной или, лучше, конфигурационной статической стереохимии Вант Гоффа и Вислице-нуса, а от динамических пространственных эффектов, проявляющихся в реакционной способности, таких, как пространственные затруднения (Виктор Мейер), байеровское напряжение циклов, вальденовское обращение. Именно эта динамическая стереохимия, стереохимия реакций, узловые понятия которой—конформация молекулы и строение переходного состояния—развиваются в последние годы все быстрее н успешнее. Если отдельные вопросы, составившие предмет данной книги, например конформационный анализ, новая трактовка пространственных препятствий, правило Гаммета, были уже предметами специальных обзоров и монографий, то в целом эта новая динаш1ческая стереохимия, насколько я представляю себе, написана впервые. [c.5]

    Сцепление генов в соматических клетках предложено называть син-тенией, от греческого сшд>-совместно, тени -поддерживать. Этот термин введен для того, чтобы отличать данные о хромосомной локализации, полученные в опытах с соматическими клетками, от результатов по сцеплению генов, полученных при анализе родословных. Если два гена присутствуют или оба отсутствуют в гибридных клеточных линиях, то они называются синтеничными. Из результатов, приведенных в табл. 18.1, следует, что гены ТК и GALK синтеничны. Оба этих гена локализованы в семнадцатой хромосоме. [c.297]

    Существует простой метод, так называемый анализ путей, или путевой анализ, позволяющий определять коэффициент инбридинга для любого организма с известной родословной подобно тому, как мы сделали это выше для потомства от скрещивания между сибсами. Этот метод основан на подсчете числа стрелок в родословной, образующих замкнутые циклы, включаюшие анализируемую особь и всех предков, общих для обоих родителей. На рис. 25.2 изображена родословная особи К, мать которой приходится двоюродной племянницей ее отцу (или, наоборот, отец-двоюродным племянником матери). А и В-два предка, общие для обоих родителей Н и I. В этом случае имеются два пути К-1-0-С-А-0-Н-К и К-1-0-С-В-0-Н-К, состоящие из семи этапов. Поскольку К появляется дважды в каждом пути, число этапов и в этом и в другом пути сокращается на единицу. Коэффициент инбридинга равен сумме слагаемых, каждое из которых определяется числом этапов в соответствующем пути и равно (1/2)", где число этапов минус единица (или просто число этапов, если рассматриваемая особь появляется в каждом пути только один раз). Для родословной, представленной на рис. 25.2, вклад каждого из двух путей составляет (1/2) = = 1/64, и, значит, коэффициент инбридинга равен Р = 1/64 -Ь 1/64 = 1/32. [c.170]

    Самый прямой способ отличить автономное новедение клетки от ее поведения под контролем межклеточных взаимодействий состоит в из) чеиии того, как перемещение клеток в другой участок тела или их выделение с целью искусственного изменения среды обитания сказывается на их новедении. Эти вопросы трудно поддаются изучению у С. elegans, поскольку разрушение клеток лазерным лучом не позволяет решить эт> задачу. Отсутствие информации о межклеточных взаимодействиях в процессе развития этой нематоды осложняет изучение базовых программ клеточного контроля, даже несмотря на хорошо изученную родословную всех клеток и характеристик> многих мутантов но генам, контролирующим развитие. Среду, в которой находится клетка, проще изменять в культуре. Здесь появляется возможность непосредственного анализа как программ, контролирующих новедение клетки, так и межклеточных взаимодействий, управляющих клеточными делениями и дифференцировкой в процессе развития некоторых частей тела позвоночных. [c.94]

    Для понимания программ развития индивидуальных клеток эмбриона необходимо проследить их историю, проведя анализ клеточной родословной. Для генеалогии позвоночных характерна случайная изменчивость. Но у определенных нематод и некоторых других групп беспозвоночных схема клеточных делений в процессе развития контролируется настолько точно и настолько предсказуемо, что клетки, занимающие в теле животного определенное положение, у всех особей данного вида развиваются по одному и тому же пути. Была прослежена нормальная судьба всех клеток нематоды aenorhabditis elegans в течение всего периода развития и изучены последствия экспериментального воздействия на уровне индивидуальных идентифицируемых клеток. Идентифицированы многие гены, определяющие реализацию программы, контролирующей развитие клеток. Для этого были изучены изменения клеточных родословных, возникающие вследствие мутации данных генов. В общем можно отметить, что мутации генов, контролирующих развитие, координированно влияют на дифференцировку и деление клеток Эти наблюдения позволяют предположить, что контроль указанных клеточных процессов обеспечивается неким общим базовым ме- [c.96]

    На рис. 3.3 показана родословная с 36 пораженными (в поколениях II-V), среди которых 13 мужчин и 23 женщины. Среди непораженных - 18 мужчин и 15 женщин. Признак передается от одного из родителей примерно половине детей, причем передача признака не зависит от пола. К сожалению, Фараби не включил в родословную детей непораженных родственников. Анализ других родословных свидетельствует об отсутствии брахидактилии среди потомства родителей, которые не являются носителями доминантного гена. Впоследствии семья, о которой сообщал Фараби, была обследована вновь [708]. Добавились дети непораженных членов семьи и некоторых пораженных. Рентгенологическое обследование подтвердило, что укорочены не только кисти и стопы, но также и кости дистальных отделов верхних и нижних конечностей. Основной дефект затрагивает предположительно эпифизарные зоны роста. В настоящее время такая аномалия называется брахидактилией типа А1 (11250). (Число в скобках указывает порядковый номер заболевания по каталогу Мак-Кьюсика [133].) [c.153]

    Прямое обследование родословных. У человека анализ сцепления классическими методами, разработанными на дрозофиле, невозможен, поскольку невозможны прямые скрещивания. В ряде случаев некоторую информацию дает анализ родословной. Например, сцепление можно исключить, если один из генов локализован в Х-хромосоме, а другой-в аутосоме, и напротив, сцепление можно с высокой вероятностью утверждать, если оба гена расположены в Х-хромосоме. Выявление сцепления в этом случае может быть затруднено, если гены далеко отстоят друг от друга и разделяются кроссинговером. Это справедливо и для аутосомных генов. Гены, находящиеся в одной хромосоме, называют синтенными. При этом неважно, можно ли формально продемонстрировать сцепление при семейном анализе или нет. Чтобы выявить кроссинговер, нужно исследовать либо большую родословную, [c.193]

    Из анализа родословных известно, что имеются два набора аллелей, один для протанопии, а другой для дейтеранопии. Родословные типа указанных на рис. 3.30 и 3.31 демонстрируют генетическую независимость этих дефектов цветоощущения, однако некоторые наблюдения свидетельствуют о наличии редких мутаций, не обнаруживающих полной комплементации [668]. Согласно последним результатам молекулярной генетики, гены протанопии и дейтеранопии произошли от одного гена путем дупликации, последующих мутаций, неравного кроссинговера или генной конверсии [825а]. [c.209]

    Довольно скоро выяснилось, что гемолитические реакции такого типа встречаются чаще у мужчин, чем у женщин. Было проведено количественное определение стабильности глутатиона, основанное на измерении его концентрации до и после инкубации эритроцитов с ацетилфенилгидразином Кривые распределения, построенные для 144 обследованных американских негров, имели ярко выраженный бимодальный характер, причем в значительной части популяции уровень содержания глутатиона был крайне низким. В группе из 184 негритянок кривая смещена влево, а доля больных с низким содержанием глутатиона гораздо меньще, чем в группе мужчин. Отсюда следует, что данный признак сцеплен с Х-хромосомой низкое содержание глутатиона после инкубации с ацетилфенилгидразином характерно для гомозиготных женщин и гемизиготных мужчин, а промежуточное-для гетерозиготных женщин. Это предположение вскоре получило подтверждение в работах по анализу родословных [1034]. Сходные картины распределения были получены и при использовании методов прям ого анализа ферментов в популяции. Заметим, что величины, полученные для гетерозигот, оказались средними между нормой и значением, характерным для гомозиготных больных (рис. 4.6). [c.23]

    Углубленный биохимический и молекулярный анализ [1167 1001 1002]. Все исследованные случаи недостаточности по G6PD, для которых проводили анализ родословных, подтверждают сцепление гена, детерминирующего этот признак, с Х-хромосомой. Весьма вероятно поэтому, что мутации, обусловливающие все изученные варианты, действительно принадлежат одному локусу и что по крайней мере для эритроцитов не существует другого локуса, кодирующего глюкозо-6-фосфат—дегидрогеназу. Все известные на сегодняшний день варианты, по-видимому, обусловлены различными мутациями в одном структурном гене. [c.26]

    Многие случаи таких отклонений встречаются чисто случайно, однако иногда наблюдаются семейные корреляции, при этом обнаруживается наследование от здоровых женщин и дополнительные случаи среди сестер матерей (матроклинные тетки пробандов). Это позволяло предположить мутацию, сцепленную с Х-хромосомой. Однако, поскольку репродукция у больных полностью нарушена, не удавалось получить и окончательных доказательств сцепления с Х-хромосомой, т.е. наблюдать наследование признака от гемизиготы всеми дочерьми, но не сыновьями. Поэтому нельзя исключить ограниченного полом проявления аутосомно-доминантного гена. Однако, в 1971 г. у мыши была обнаружена мутация с очень близким фенотипом [1025], которая явно была сцеплена с Х-хромосомой. Х-хро-мосома млекопитающих остается эволю-ционно стабильной, расположенные в ней гены являются гомологичными у всех до сих пор изученных видов млекопитающих [156]. Более того, рецепторы тестостерона можно обнаружить также в фибробластах, причем гетерозиготы имеют две разные популяции фибробластов-нормальную и неспособную связывать тестостерон, как это предсказывалось гипотезой Лайон [985]. Таким образом, сцепление с Х-хромосомой можно считать установленным. Любопытно, что Паттерсон и Бонньер, основываясь на анализе родословных, еще в 1937 г. [c.140]

    Синдром ломкой Х-хромосомы Этот синдром-вероятно, самая распространенная Х-сцеп-ленная наследственная болезнь человека (см разд. 8.2.1.2). Недавно полученная для него оценка частоты мутаций оказалась самой высокой из всех оценок, вычисленных для классических фенотипов человека (разд. 5.1.3.2). Сегрегационный анализ родословных, объединенных в большое число серий [1619], не выявил спорадических больных, причину недуга которых можно объяснить мутациями, возникшими в половых клетках их матерей. В случае синдрома ломкой X сегрегационный анализ дал результат, сходный с полученным ранее для гемофилии А (см. табл. 5.13) Авторы сделали вывод, что в случае синдрома ломкой X все мутации de novo произошли в мужских половых клетках. Нам представляется такой вывод преждевременным. Ведь смещения выборки родословных, взятых в анализ, неизбежны. Как отмечалось в разд. 5.1.3.2, эти исследования не основываются на результатах изучения всех случаев болезни в популяции ограниченной численности. Кроме того, нельзя исключить возможность инфляции Оценки частоты мутаций, обусловленной частич- [c.181]

    Анализ родословных. Если мутация происходит во время раннего развития половых клеток, возможно образование герминативных мозаиков, у которых более или менее значительная часть клеток одной из гонад несет эту мутацию. Такая ситуация хорошо известна из работ по изучению мутагенеза у Drosophila melanogaster, кроме того, у мыши описан кластер клеток, возникший в результате мутации на ранних стадиях развития ооцита (см, табл, 5.15), Вероятность обнаружения таких кластеров у людей очень мала их можно выявить только в том случае, если мутация имеется в клетках, составляющих большую часть гонады. [c.183]

    Пример при изучении населения острова Хосодзима (Япония) семь членов совета острова из общего числа браков 45 выделили 19 кровнородственных. Проверка регистрационных записей увеличила это число до 25, в результате тщательного анализа родословных число браков между родственниками возросло до 29 [1794]. [c.345]

    Порядок рождения и возраст матери. Гипотеза простого типа наследования предсказывает также, что последовательность пораженных и непораженных сибсов случайна и что нет влияния порядка рождения или возраста отца или матери. Наиболее общие критерии случайности последовательностей базируются на теории случайных процессов и адаптированы к использованию в анализе родословных человека. Старое утверждение, что при анемии Фанкони сибсы, пораженные рецессивной болезнью крови (разд. 5.1.6) образуют кластеры внутри сибств, недавно было опровергнуто тестом, основанным на теории случайных процессов [895]. [c.194]


Смотреть страницы где упоминается термин Родословные, анализ: [c.176]    [c.450]    [c.457]    [c.244]    [c.128]    [c.48]    [c.49]    [c.49]    [c.132]    [c.195]    [c.204]    [c.27]    [c.170]    [c.6]    [c.66]   
Молекулярная биотехнология принципы и применение (2002) -- [ c.442 , c.443 ]




ПОИСК







© 2025 chem21.info Реклама на сайте