Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

алкилирование протонирование

    Декарбоксилирование карбоновых кислот персульфатами в присутствии ионов серебра — простейший и наиболее удобный метод алкилирования протонированных гетероароматических оснований  [c.49]

    Далее происходит алкилирование протонированного субстрата алкильным радикалом по местам наименьшей электронной плотности (а- и у-)  [c.551]

    Первой стадией О— алкилирования метанола изобутеном является протонирование последнего гидрид ионом кислотного катализатора  [c.148]


    Таким образом, при получении очень нуклеофильных амидных анионов катализатор может действовать одним из двух способов либо 1) переносить гидроксид-ион, осуществляющий депротонирование, в органическую фазу, либо 2) убирать де-протонированную молекулу с поверхности раздела фаз. Эти предположения находят подтверждение в большинстве исследований, выполненных в данной области. Действительно, в литературе имеется только несколько публикаций, в которых сообщается об алкилировании неактивированной НН-связи в присутствии четвертичных аммониевых катализаторов. В присутствии водных растворов гидроксидов калия или натрия были проалкилированы 1,3-дихлорбутеном-2 и бензилхлоридом раз- [c.160]

    Найденное распределение дейтерия в боковой цепи пропилбензолов авторы объясняют образованием на первой стадии протонированных форм циклопропана, дальнейшая судьба которых определяется условиями проведения реакции. Образование при сернокислотном алкилировании (20 °С) почти чистого н-пропилбензола рассматривается как результат быстрого перераспределения дейтерия в протонированных циклопропанах - и последующего прямого алкилирования с раскрытием кольца на стадии образования л- или а-комплекса. [c.132]

    Установленное сходство изомерного состава продуктов сернокислотного алкилирования бензола метилциклопропаном и бу-танолом-2 позволило сделать вывод об одинаковой природе атакующих электрофильных частиц — карбониевых ионах, которые в случае метилциклопропана образуются из протонированных циклопропановых форм. [c.133]

    Изомеризация олефинов. Изомеризация играет важную роль в механизме алкилирования изобутана бутиленами. Бутилены нормального строения в основном еще до алкилирования изомери-зуются в изобутилен. По-видимому, это превращение происходит в ионной форме, т. е. немедленно вслед за протонированием олефина, о чем свидетельствует легкость, с которой многие олефины уже при комнатной температуре способны присоединять НР по двой- [c.35]

    Реакции н-бутиленов. В условиях алкилирования бутиленом все четыре изомера олефина подвергаются изомеризации, димеризации и содимеризации, по-видимому, в момент контакта с НР, т. е. сразу же после протонирования. Перечисленные реакции представляют собой чрезвычайно быстрые процессы, конкурирующие с алкилированием. [c.40]

    Традиционное алкилирование парафинов олефинами представляет собой катализируемую кислотами реакцию, которая заключается в присоединении третичного карбоний-иона, генерируемого из молекулы парафина, к олефину с образованием (после присоединения гидрид-иона) насыщенного углеводорода более высокой молекулярной массы. Механизм этой реакции [19] показан на примере алкилирования изобутана этиленом (схема I) и заключается в следующем. Первоначально протекает протонирование этилена. При этом образуется кислотный первоначальный этил- [c.150]


    При алкилировании бензола алкенами кроме катализатора Фриделя — Крафтса должна присутствовать кислота, способная протонировать алкен. Первой стадией в этом случае является реакция протонирования алкена, ведущая к образованию карбкатиона, который и атакует бензольное кольцо. [c.612]

    Для достижения ароматичности шесть я-электронов атомов кольца должны занимать устойчивые делокализованные орбитали, что связано с переходом двух электронов атома азота в общую систему я-электронов. Хотя электронное облако будет смещено при этом в сторону атома азота (из-за более высокой электроотрицательности этого атома по сравнению с атомами углерода), тем не менее электронная пара азота уже не будет способна принимать протон. Такая ситуация напоминает рассмотренный выше случай с анилином (см. стр. 86) в том смысле, что катион XI, образующийся в результате протонирования пиррола, оказывается дестабилизованным по сравнению с нейтральной молекулой X (показано, что протонирование идет по азоту, хотя оно может идти также и по -углеродному атому, как это имеет место, например, в случае С-алкилированных пирролов). В случае пиррола дестабилизация катиона выражена гораздо сильнее чтобы функционировать как основание, пиррол должен полностью утратить свою ароматичность, а следовательно, и стабильность. Тот факт, что пиррол действительно является слабым основанием, видно из его значения р/(ь, равного приблизительно 13,6 (в случае анилина р/Сь 9,38). Поскольку основность пиррола очень низка, он может функционировать как кислота, хотя и очень слабая, из-за способности атома водорода, связанного с азотом, удаляться сильным основанием (например, ионом МИг) с образованием пиррольного аниона, стабилизованного за счет делокализации. [c.91]

    Специфич. р-ции Е. обусловили их широкое использование в орг. синтезе. Протонирование и алкилирование Е. может протекать по атому азота или по Р-углеродному атому  [c.126]

    В случае R" = Alk такая перегруппировка катализируется алкилгалогенидами. Протонирование, алкилирование, ацилирование, галогенирование И. обычио осуществляется по [c.214]

    В молекуле нуклеозида потенциально существует так много мест, которые могут быть алкилированы, что, если не принимать предосторожностей, получается очень сложная смесь продуктов. Это означает, что выделение любого отдельного соединения с разумным выходом, несмотря на использование колонок с Дауэксом ( ОН) [29], является скорее вопросом удачи, чем планирования. Даже причины найденных различий в степени алкилирования различных положений в нуклеозиде не полностью понятны. Если рассмотреть атомы азота кольца, способные к алкилированию в пуриновых и пиримидиновых нуклеозидах, то не существует прямой корреляции между основностью этих положений, по данным измерения р/(а, и относительной легкостью их алкилирования. Сделано заключение [173], что протонирование является равновесным процессом, тогда как алкилирование необратимо и, таким образом, подчиняется кинетическому контролю и влиянию стерических факторов. [c.116]

    Исследование гидролиза ряда эфиров ортофосфорной кислоты в основном указывает, что щелочной гидролиз протекает с разрывом Р—0-связи, а кислотный С—0-связи [45], т. е. высокая нуклеофильность гидроксильного иона в щелочных средах способствует его атаке на атом фосфора с разрывом Р—0-связи. В кислой среде молекула воды обладает меньшей нуклеофильностью и способна лишь к атаке на алкоксильный радикал, что заканчивается разрывом С—0-связи. Возможное протонирование эфирного кис- лорода, предшествующее алкилированию, способствует в этом случае нуклеофильной атаке. [c.97]

    В литературе обсуждается вопрос о возможном участии в реакции алкилирования в качестве промежуточных частиц протонированных форм алкилциклопропанов [172, с. 369]. Чтобы выяснить, образуются ли подобные частицы в выбранных условиях, проведено алкилирование бензола [1- С]бутеном-1 при 25 °С. Полученные данные показали (табл. 4.3), что изотопная метка содерл<ится только в метильных группах втор-бутилбензола. Отсутствие изотопа в других положениях бутильной группы позволяет говорить о том, что при алкилировании бензола бутеном-1 в присутствии указанных каталитических систем промежуточные метилциклопропаны практически не образуются. Кроме того, результаты подтверждают сделанный выше вывод [c.94]

    Доказательством образования на первой стадии протонированных циклопропановых частиц служат также данные по распределению дейтерия, полученные при алкилировании бензола и толуола метилциклопропаном. Наличие дейтерия во всех четырех положениях боковой цепи агор-бутилбензола является, по мнению В. А. Исидорова [172, с. 585], результатом быстро протекающего перераспределения дейтерия в образующихся протонированных частицах, которые до взаимодействия с бензолом успевают перегруппироваться в термодинамически более устойчивые егор-бутил-катионы. [c.133]

    Условия, необходимые для алкилирования парафино1В олефинами, зависят а) от силы кислотного катализатора б) от кислотности (активности) карбоний-иона, генерируемого в результате протонирования олефина (так, этильный катион настолько [c.151]


    Протонированные азотсодержащие гетероциклы (например, пиридины, хинолины) подвергаются алкилированию при обра -ботке карбоновой кислотой, нитратом серебра, серной кислотой и пероксидисульфатом аммония [286]. Группа R может быть первичной, вторичной или третичной. Атакующей частицей является радикал R, образующийся следующим образом [287]  [c.100]

    Кинетически как протонирование, так и алкилирование, направляются преимущественно по а-углсродному атому. Протонирование такого енс - [c.23]

    Алкилирование. Алкилгалогениды и алкилсульфаты легко реаги-руют с пиридинами при этом образуются М-алкилированные четвертичные пиридиниевые соли. Возможна и альтернативная реакция элиминирования, которая приводит к образованию олефина и Ы-протонированной четвертичной соли пиридина. Как и в ряду алифатических третичных аминов, эта конкурирующая реакция стимулируется увеличением числа заместителей у атома азота или углерода, связанного с галогеном или с сульфогруппой. Такова, например, реакция дегидрогалогенирования с помощью коллидина (2,4,6-триметилпиридина)  [c.57]

    Алканы, особенно изоалканы, взаимодействуя с алкенами в присутствии таких катализаторов, как галогениды алюминия, трехфтористый бор, фтористый водород и серная кислота, дают высшие члены ряда. Каталитическое алкилирование, таким образом, является методом получения топлив с высокими октановыми числами из некоторых газообразных низкомолекулярных алканов, образующихся в процессе переработки нефти. Как видно из предыдущего, изоалканы, необходимые для реакции алкилирования, могут быть легко получены с помощью процессов изомеризации. Так, изобутан, имеющий наибольшее промышленное значение как алкилиру-ющий реагент, получают изомеризацией н-бутана. Олефины, необходимые для каталитического алкилирования, например пропен и бутен, являются побочными продуктами другого процесса переработки нефти — каталитического крекинга. Алкилирование приводит к довольно сложным смесям продуктов. Так, например, алкилирование нзобутана пропеном в присутствии фтористого водорода при 40°С дает следующие продукты пропан, 2,3-диметилпентан, 2,4-ди-метилпентан, 2,2,4- и 2,3,4-триметилпентаны, 2,2,3- и 2,3,3-триэтил-пентаны. Продукт реакции является, таким образом, смесью высо-коразветвленных алканов, обладающих высокими октановыми числами. Реакция представляет собой цепной процесс, инициированный протонированием олефина фтористым водородом. Изопропил-катион отрывает гидрид-ион от изобутана, давая грег-бутил-катион, который присоединяется к пропену. Образующийся при этом диметил-пентил-катион, может претерпевать внутримолекулярную перегруппировку, давая изомерные катионы, которые превращаются в диме-тилпентаны за счет отрыва гидрид-иона. Продукты состава Сз образуются в результате взаимодействия изобутена, образующегося путем элиминирования протона из грег-бутил-катиона, с пропеном. [c.157]

    Заканчивая обзор реакций электрофильного присоединения к олефинам следует выделить группу реакций, в которых первой стадией является протонирование олефина с образованием карбениевого иона с последующей атакой нуклеофилом. Эти реакции типичны не только для олефинов, поскольку промежуточные карбениевые ионы могут быть получены и из других предшественцнков, поэтому в этом разделе такие реакции будут рассмотрены очень кратко. Приведенные ниже примеры включают 1) алкилирование оксида углерода (генерированного из муравьиной кислоты) — кар-боксилирование по Коху — Хаафу [70] (уравнения 139, 140) 2) алкилирование нитрилов с образованием амидов — реакция Риттера [71] (уравнение 141) 3) алкилирование тиолов (уравнение 142) 4) гидридный перенос от силилгидридов, ведущий к полному восстановлению [72] (уравнение 143). Однако такие карбениевые ионы склонны к перегруппировкам (см. уравнение 140). [c.211]

    Поскольку 2Я-фураноны-3 являются винилогами лактонов, они не дают таких производных кетонов, как семикарбазоны. Спектральные данные показывают, что они существуют исключительно в кетоформе. При взаимодействии с ацетатом натрия и уксусным ангидридом 2Я-фураноны-3 можно превратить в 3-ацетоксифура-ны, но при действии метилиодида и сильного основания они подвергаются С-алкилированию. Как правило, они устойчивы к действию кислот при этом происходит лишь протонирование. Однако [c.162]

    Другой важной реакцией по атому серы является алкилирование (нли протонированне ) с использованием жесткого электрофила, например фторбората триметилоксония, алкилфторсульфонатов пли алкилгалогенидов в присутствии фторбората или перхлората серебра [49]. И в этом случае спектроскопические и химические данные подтверждают, что тиофениевые соли (36) непланарны и обладают диеновым характером (хотя реакции циклоприсоединения для них не наблюдались) их УФ-спектры очень напоминают спектры рассмотренных выше оксидов .  [c.247]

    Каталитические свойства хлористого водорода особенно заметно проявляются в процессе алкилирования бензола и его гомологов в присутствии хлорида алюминия. Исследование механизма алкилирования показало, что требуется обязательное присутствие хлористого водорода при образовании каталитического комплекса на стадии протонирования оле4ина. В целом процесс можно представить в виде следующих реакций  [c.143]


Смотреть страницы где упоминается термин алкилирование протонирование: [c.83]    [c.345]    [c.346]    [c.72]    [c.153]    [c.1051]    [c.294]    [c.302]    [c.97]    [c.374]    [c.445]    [c.552]    [c.221]    [c.424]    [c.447]   
Химия гетероциклических соединений (2004) -- [ c.167 ]




ПОИСК





Смотрите так же термины и статьи:

Нуклеофильные реакции инаминов, приводящие к димерным производным (алкилирование, галогенирование и протонирование сильными кислотами)

протонирование, основность алкилирование



© 2025 chem21.info Реклама на сайте