Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этилен химические свойства

    По химическим свойствам глицерин (по систематической номенклатуре 1,2,3-пропантриол) очень близок к этилен-гликолю. Так, с гидратом окиси меди глицерин образует ярко-синий глицерат меди  [c.376]

    Важным химическим свойством этилена и его гомологов является способность легко окисляться уже прн обычной температуре. При этом окислению подвергаются оба атома углерода, соединенные двойной связью. Если этилен пропускать через водный раствор перманганата калня КМпОд, то характерная фиолетовая окраска последнего исчезает, происходит окисление этилена перманганатом калия  [c.290]


    По химическим свойствам ацетилен во многом аналогичен этилену. Для него характерны реакции присоединения, окисления и полимеризации. [c.293]

    Физические и химические свойства олефинов. Этилен, пропилен, бутилен—газы следующие члены гомологического ряда — жидкости начиная с СхвНз —твердые тела (см. табл. 2). Плотности олефинов выше, чем у соответствующих предельных углеводородов. Как и в случае предельных углеводородов, с увеличением числа атомов углерода в молекуле возрастает плотность, а также повышаются температура плавления и кипения олефинов. Олефины с двойной связью на краю цепи имеют более низкую температуру кипения, например З-метилбутен-1 имеет темп. кип. - -20,1 °С, а 2-метилбутен-2—темп. кип. 38,6 С 2,4,4-триметил-пентен-1—темп. кип. 101,4°, а 2,4,4-триметилпентен-2—темп, кип. 104, 9 С. [c.76]

    Химические свойства углеводородов, не имеющих кратных (двойной или тройной) связей, в общем приблизительно повторяют свойства метана. Введение в молекулу кратной связи обычно сообщает ей склонность к реакциям присоединения. Это отмечают, говоря о ненасыщенном (непредельном) характере вещества, содержащего в своем составе кратные связи. Например, простейшие непредельные углеводороды—этилен (Н2С=СНг) и ацетилен (Н—С С—Н) — легко присоединяют галоиды. Реакция присоединения связана с переходом кратных связей между атомами углерода в простые. Сравнительная легкость такого перехода и обусловливает ненасыщенный характер соединений. в-з4 [c.538]

    По химическим свойствам этилен резко отличается от метана, что обусловлено электронным строением его молекулы. Имея в молекуле двойную связь, состоящую из (Т- и я-связей, этилен способен присоединять два одновалентных атома или радикала за счет разрыва я-связи. [c.289]

    Важным химическим свойством этилена и его производных является способность легко окисляться уже при обычной температуре. При этом окислению подвергаются оба атома углерода, соединенные двойной связью. Если этилен пропускать в водный раствор перманганата калия КМПО4, то характерная фиолетовая окраска последнего исчезает, происходит окисление этилена КМПО4. Эта реакция используется для установления непредельности исследуемого вещества — содержания в нем двойных или тройных связей. [c.349]

    По химическим свойствам этилен резко отличается от метана. Имея в молекуле двойную (ненасыщенную) связь, он способен присоединять два одновалентных атома или радикала, при этом двойная связь разрывается и переходит в одинарную. [c.347]


    Физико-химические свойства Поли- этилен Полипро- пилен Полистирол блочный Поливинил- хлорид Фторопласт-4 Фторопласт-3 [c.243]

    По химическим свойствам ацетилен во многом аналогичен этилену. Но так как в его молекуле содержится тройная связь, то он является еще более ненасыщенным соединением, а потому обладает большей реакционной способностью, чем этилен. Для него характерны реакции присоединения, окисления и полимеризации. [c.350]

    Потенциалы ионизации я-электронов меньше аналогичных величин для а-электронов и в больших молекулах ароматических углеводородов могут не превышать 6 эВ. Именно низкая энергия возбуждения со связывающей л-орбитали на разрыхляющую молекулярную л -орбиталь ответственна за поглощение этими соединениями в видимой и близкой ультрафиолетовой областях спектра. Более того, сравнительно слабая связь я-электронов ненасыщенных углеводородов является причиной их большей реакционной способности по сравнению с насыщенными углеводородами. Многие интересные физические и химические свойства ненасыщенных углеводородов обусловлены наличием я-электронов, и теория я-электронов Хюккеля основана на предположении, что при объяснении различий между такими молекулами (например, этиленом и бензолом) можно большей частью игнорировать а-орбитали. Поэтому в дальнейшем будем рассматривать только молекулярные орбитали, получающиеся из атомных 2/ лг-орбиталей каждого ненасыщенного атома углерода. [c.192]

    В настоящей главе приведены основные физико-химические свойства веществ, используемых при синтезе ПЭВД, а также сведения о фазовых равновесиях и сжимаемости системы этилен - полиэтилен. [c.41]

    Рассказать об этилене а) состав и строение, б) получение, в) физические свойства, г) химические свойства, д) применение. [c.204]

    Химические свойства. Допущение, что в этилене атомы углерода связаны двойной связью, приводит к выводу, что и в этилене углерод четырехвалентен, причем валентности его полностью насыщены. Формально этиленовые углеводороды являются в такой же мере насыщенными , как и парафиновые углеводороды, и даже естественной является мысль, что двойная связь между атомами углерода должна бы прочнее связывать эти атомы, чем простая связь. Опыт, однако, показывает, что этилен и все соединения, содержащие в молекуле этиленовую, или двойную, связь, являются соединениями ненасыщенными, т. е. чрезвычайно реакционноспособными, причем в подавляющем большинстве реакций принимают участие атомы углерода, связанные двойной связью. Кроме того, алкены особенно склонны к реакциям присоединения элементов различных молекул к этим ато.мам, в результате чего между ними остается лишь простая связь. [c.364]

    Первые сообщения о синтезе сополимеров этилена и пропилена были сделаны Натта и его сотр. в 1954—1955 гг. В настоящее время этилен-пропиленовый каучук (двойные и тройные сополимеры) представляют собой один из наиболее перспективных каучуков общего назначения. Поэтому методам его получения, изучению физико-химических свойств, структуры, способов вулканизации, свойств вулканизатов, областям применения и т. п. вопросам посвящены многочисленные исследования [c.251]

    После изучения физических свойств ацетилена преподаватель останавливается на его химических свойствах. Необходимо подчеркнуть, что ацетилен, так же как этиленовые соединения, имеет ненасыщенный характер. Один объем ацетилена и один объем молекулярного водорода в присутствии палладия дают этилен  [c.57]

    Химические свойства. 1. Этилен горит слегка светящимся пламенем [c.34]

    Химические свойства. Алкины являются еще более ненасыщенными углеводородами, чем олефины, этим и объясняется их способность к реакциям присоединения. Они присоединяют галогены, водород и атомы других элементов или группы атомов. Реакции присоединения протекают в две стадии вначале тройная связь переходит при разрыве в двойную, т. е. получается этилен или его производные, а затем происходит разрыв двойной связи, в результате чего получаются предельные углеводороды. [c.41]

    Сополимер этилена с пропиленом морозоустойчив он становится хрупким при температуре около —90° С, что позволяет использовать его при изготовлении морозостойких изделий. По комплексу физико-химических свойств вулканизаты на основе этилен-пропи-ленового сополимера в основном близки к дивинил-стирольному сополимеру. [c.272]

    МЕТИЛАКРИЛАТ (метиловый эфир акриловой кислоты) Hj H OO Hj— бесцветная жидкость, т. кип. 80,2 С, По химическим свойствам и способам получения М. подобен метилметакрила-ту. В промышленности получают из нитрила акриловой кислоты, из этилен-циангидрина, прямым карбонилирова-ние. л ацетилена, М. обладает наркотическим и ядовитым действием. Его пары раздражают слизистые оболочки носа, горла, глаз. М.— мономер, полимернзу-ющийся под действием свободных радикалов. Используют, в основном, как сополимер, напрнмер со стиролом. [c.160]

    Возможность движения электронов в молекуле eHg около всех углеродных атомов приводит к уменьшению их кинетической энергии, следовательно, к увеличению прочности связи. Это объясняет химические свойства бёнзола, который значительно менее склонен к реакция м присоединения, чем этилен и другие непредельные углеводороды. [c.174]


    По химическим свойствам глицерин (по заместительной номенклатуре пропантриол-1,2,3) очень близок к этилен гликолю. Так, с гидроксидом меди (И) глицерин образует ярко-синий глицерат меди  [c.315]

    Фазовое состояние системы этилен —полиэтилен, физико-химические свойства равновесных фаз оказывают решающее влияние на кинетику полимеризации зтилена и качество полиэтилена. Этисведения необходимы [c.46]

    За последние несколько лет все большее вниманае ученых и производственников привлекают к себе некоторые простые органические вещества — мономеры, из которых поликонденсацией или полимеризацией могут быть синтезированы макромолекулы. Многие из этих простых органических соединений известны уже давно, но только в последнее время их способность к образованию полимерных молекул получила долндаую оценку и практическое применение. Описание большинства физических и химических свойств многих мономеров может быть найдено в обычных руководствах и справочниках по органической химии, и подбор всех необходимых сведений о таких веществах, как этилен, фенол, мочевина, форма.пьдегид, глицерин, фталевый ангидрид, адипи-новая кислота и малеиновый ангидрид, не составит затруднений. [c.7]

    Вскоре в Nature появилась статья Робинсона , который возражает против изображений молекул окиси этилена и циклопропана, предлагаемых Уолшем, и считает, что общепринятое изображение строения этих молекул вполне отвечает их свойствам. Особенно резко Робинсон отрицает аналогию свойств окиси этилена и этилена он считает, что по химическим свойствам окись этилена более сходна с ацетальдегидом, так как в первой фазе реакций олефины ведут себя как анионоиды, а ацетальдегид и окись этилена — как катионоиды, т. е. этилен начинает взаимодействовать с отдачи электрона, а окись этилена — с получения электрона. Робинсон отрицает также правомерность сравнения поведения окиси этилена в водных растворах с поведением аммиака. [c.19]

    Число звеньев этилена в сополимере обычно превышает число звеньев пропилена в 1,5—2 раза. Однако известны каучуки, содержап1 ие в своем составе всего 7—12% С2Н4, наряду с 88—93% СзНе. Основным условием получения высококачественных сополимерных полиолефиновых каучуков является образование аморфных структур, не способных кристаллизоваться. Макромолекулы этилен-пропиленового казгчука обладают хорошей гибкостью в сочетании с высокой химической стойкостью, характерной для насыщенных полимеров. Двойные связи в СКЭП нельзя обнаружить химическими методами, так как одна двойная связь приходится на 10—20 тыс. атомов углерода, поэтому они не влияют на химические свойства каучука. [c.166]

    Высшие гликоли относителыно мало интересны и вследствие этого не будут здесь рассматриваться детально. Своими общими химическими свойствами они близко напоминают этилен- и пропиленгликоли. При отщеплении дады эти гли- [c.576]

    Химические свойства. Они проявляют свойства спиртов и аминов а-аминоалкоголи при действии серной кислоты дают этилен-и м и ны  [c.324]

    Физические и химические свойства. Бесцветный горючий газ без запаха. С водой образует гидрат QHe.THaO. Горит слабо све-тящимся пламенем. Концентрационные пределы воспламенения в смеси с воздухом 3,0—12,5 % (по объему). При обычной температуре химически инертен. Т. воспл. 530 °С. При 575—600 °С расщепляется на этилен и водород (в отсутствие кислорода). См. также приложение. [c.23]

    В качестве смешанных растворителей было предложено использовать смеси тетрагидрофурана с пропиленкарбонатом и диметилсульфоксидом [24), с низшими алифатическими спиртами (до 50% по объему) [68], с 1,2-диметоксиэтаном [64] и 1,2-диметилформалем (30%) или 1,1-диметилформалем (46%) [69]. Затем, к пропиленкарбонату предложено добавлять этиленкарбонат [43, 47], нитроэтилен [34], ацетонитрил и метил- или бутнлформиат [47]. Эти вещества рекомендуется добавлять также к у-бутиролактону, диметилформамиду и диметилсульфоксиду [47]. Существует также более общая заявка [33], в которой в качестве растворителя для источника тока предлагается использовать смеси пентациклических эфиров (этилен- и пропилен-карбоната, Y-бyтиpoлaктoнa и т. д.) с представителями нитропарафинов, алифатических или циклических эфиров, циклических кетонов и алифатических нитрилов. По причинам, которые указывались выше, далеко не всегда можно легко объяснить преимущества смешанного растворителя по сравнению с индивидуальными компонентами. В литературе имеется чрезвычайно мало данных не только по физико-химическим свойствам растворов электролитов в смешанных растворителях, но даже и по физическим свойствам самих смесей. Поэтому кроме тех простых соображений, о которых говорилось выше, работа по подбору смешанных растворителей, в основном, носит эмпирический характер. [c.59]

    В симметрично замещенных этиленах электронное облако тг-связн нмеет третью плоскость симметрии, расположенную перпендикулярно к оси а-связи и проходящую через ее середину (это поло кеиие, в частности, вытекает 113 таких опытных данных, как отсутствие у этих молекул дипольного момента, химическая идентичность атомов углерода, связанных двойной связью). В несимметричных производных этилена этот вид симметрии отсутствует, электронное облако смещено в сторону более электроотрицательной группы. Молекулы таких веществ имеют дипо.ль-ный момент, а атомы уг,лерода двойной связи но идентичны в отношении химических свойств, что проявляется, нанример, в особенностях реакций присоединения (правило Марковникова). [c.46]

    Простейшими органическими соединениями являются углесо-дороды. Кроме простых связей С—Н и С—С, в их молекулах могут содержаться также двойная связь С = С и тройная связь С=С. Химические свойства углеводородов, не имеющих кратных (двойной или тройной) связей, в общем приблизительно повторяют свойства метана. Введение в молекулу кратной связи обычно сообщает ей склонность к реакциям присоединения. Это отмечают, говоря о ненасыщенном (непредельном) характере вещества, содержащего в своем составе кратные связи. Например, простейшие непредельные углеводороды — этилен (Н2С = СН9) и ацетилен (НС=СН)—легко присоединяют галоиды. Реакция присоединения связана с переходом кратных связей между атомами углерода в простые. Сравнительная легкость такого перехода и обусловливает ненасыщенный характер соединений. [c.289]

    Еще на заре современной органической химии — в период, непосредственно примыкающий к величайшему событию в ее истории — появлению теории строения, в создании которой первенствующая роль принадлежит гениальному А. М. Бутлерову, — в 1869 г., замечательный ученик и соратник А. М. Бутлерова В. В. Марковников впервые поставил проблему о взаимном влиянии атомов в химических соединениях. Таким образом, уже тогда В. В. Марковникову и А. М. Бутлерову было ясно, что химические свойства органических веществ обусловлены не только составом и строением их молекул, но также и взаимным влиянием атомов вн п ри молекул. Так, в работе, относящейся к 1876 г., О законах образования прямых соединений непредельными органическими частицами Марковников писал Теория химического строения объясняет, почему этилен, соединяясь с иодистоводородной кислотой, дает тот же иодистый этил, который получается из этилового спирта, но она не могла объяснить, почему амилен, происходящий из амилового алкоголя брожения, соединяясь с иодисто-водородной кислотой, образует иодюр, изомерный с тем, в который непосредственно переходит тот же алкоголь. Подобные реакции не входят в область явлений, захватываемых этой теорией . Таким образом, Марковников отдавал себе отчет в том, что поставленная им проблема явится самостоятельным источником дальнейшего развития теоретических представлений в органической химии. Замечательные экспериментальные работы, предпринятые В. В. Мар-ковниковым для исследования поставленной им проблемы, а также выводы из них общеизвестны и заслуженно ставят его в ряды крупнейших в мире химиков-органиков. [c.5]

    Если не считать краткого рассмотрения одноэлектронной и трехэлектронной связей в разделе резонанса, то до сих пор наше внимание сосредоточивалось на ординарной ковалентной связи или связи с электронной парой. В некоторых молекулах существуют связи, состоящие из 4 или 6 электронов, что соответствует двойным и тройным связя.м. Доказательства существования таких связей получены из межатомных расстояний, углов между связями и общих химических свойств молекул. Для элементов первого ряда периодической таблицы С, N. О и Р радиусы двойной связи на 13 / меньше нормальных ковалентных радиусов ордннарной связи, а радиусы тройной связи меньше на 22 / , что видно из расстояний С = С в этилене (1,34 А) [c.97]

    Конкретный пример существования веществ с одинаковым составом был известен Дальтону. Он заметил, что выделенный из конденсата светильного газа углеводород имеет тот же элементный состав, что и маслородный газ (этилен), Дальтон высказал мысль, что новый углеводород представляет собой двойной атом маслородного газа. Это был бутилен, впоследствии более подробно изученный Фарадеем. В 1825 г. Фарадей исследовал масло, выделенное из конденсата газа, полученного при нагревании китового жира. Из этого конденсата Фарадей выделил два углеводорода — бензол и другой, более летучий газ, анализ которого дал состав вполне идентичный составу маслородного газа (этилена). Новый газ (изобутилен) отличался от этилена но плотности и по химическим свойствам. [c.166]

    Развивая свою теорию, Дюма различал два вида типов химические и механические, или молекулярные типы. К одному и тому же химическому типу Дюма относил вещества, содержащие одинаковое число атомов, одинаковым образом соединенных и обладающих одинаковыми главными химическими свойствами. Так, уксусная и хлоруксусные кислоты принадлежат к одному и тому же химическому типу хлороформ, бромоформ и йодоформ — к другому, этилен и газообразные галоидзамещенные продукты, полученные из него — к третьему и т. д. [c.230]


Библиография для Этилен химические свойства: [c.42]    [c.523]    [c.194]    [c.91]   
Смотреть страницы где упоминается термин Этилен химические свойства: [c.47]    [c.511]    [c.505]    [c.132]   
Органическая химия (1990) -- [ c.109 ]




ПОИСК







© 2024 chem21.info Реклама на сайте