Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константа скорости реакции мономеров

    Gi, См, Ср, s, Су, z - относительные константы скорости реакций передачи цепи соответственно на инициатор, мономер, полимер, растворитель, агент передачи цепи и ингибитор d — плотность [c.5]

    Ингибирующее действие прим еси может быть выражено отношением констант скоростей реакций обрыва и роста цепи (йог/йр). Для хорошего ингибитора это отношение очень велико. Поэтому концентрация мономера не успевает заметно измениться за то время, пока концентрация ингибитора уменьшается на многие порядки. Если йог/йр > 1, ингибитор полностью будет исчерпан до того, как начнется полимеризация. В том случае, когда йог/йр 1, полимеризация начинается до исчезновения примеси, но протекает с меньшей скоростью, чем в ее отсутствие. Наблюдается вырожденный перенос цепи. Такие примеси являются замедлителями реакции роста цепи. Ниже приведены значения отношения для некоторых ингибиторов и замедлителей полимеризации винилацетата  [c.14]


    К регуляторам М и ММР предъявляются требования высокая эффективность (скорость реакции регулятора с полимерной цепью должна превышать скорость реакции с мономером), небольшой расход, отсутствие отрицательного влияния на скорость полимеризации и свойства полимера. Указанным требованиям отвечают отдельные представители дисульфидов и меркаптанов, Из числа дисульфидов наибольшее распространение в производстве бутадиен-стирольных каучуков при температуре полимеризации 50°С получил диизопропилксантогендисульфид (дипроксид), имеющий высокую константу скорости реакции переноса цепи [4, 5]. Из меркаптанов наиболее известны додецил- или лаурилмеркаптан, трет-додецилмеркаптан, применяемый в производстве бутадиен-стироль-ных каучуков при температуре полимеризации 5°С [6]. [c.246]

    Пример 42. Определите константу скорости реакции термического инициирования и порядок реакции по мономеру при инициировании полимеризации (120 °С) стирола, если известны следующие данные  [c.26]

    При окислительно-восстановительном инициировании полимеризации 0,5 л мономера необходимо получить 5,0 х X 10 радикалов в 1 л в 1 с. Инициирующая система перекись водорода и ион Ре в стехиометрическом соотношении. Сколько потребуется 33%-ной перекиси водорсйа, если десятичный логарифм константы скорости реакции инициирования равен 1,90, а эффективность принять равной 0,6  [c.16]

    Для характеристики растворителей, как передатчиков цепи, Майо ввел понятие константы переноса и определил ее как отношение константы скорости реакции переноса к константе роста цепи [22]. Константа переноса зависит как от природы мономера, так и растворителя, что необходимо учитывать при синтезе каучуков с концевыми функциональными группами. [c.420]

    Соотношение констант скоростей реакций поликонденсации fep и циклизации fee определяет соотношение выходов продукта ноликонденсации и циклического мономера при постоянной температуре 7 г- [c.142]

    Константы скорости реакций мономеров с ингибиторами полимеризации [c.6]

    Константы скорости реакций мономеров с ингибиторами [c.214]

    Одна из больших трудностей в определении индивидуальных констант скоростей реакций полимеризации обусловлена реакциями полимера с другими частицами в растворе или даже с мономером, не приводящими к увеличению длины цепи полимерной молекулы. Такого рода реакции, которые приводят к обрыву радикальной цепи и образованию нового радикала, [c.520]


    Зная реакционную константу радикала стирола с заме-щ енными стиролами (р = 0,509), константу скорости гомополимеризации стирола (145 л моль с ) и константу а для п-хлорстирола (0,227), определите константу скорости реакции радикала стирола с мономером п-хлорстиролом. [c.183]

    Из уравнения (1.11) следует, что скорость. полимеризации прямо пропорциональна концентрации мономера в первой степени и концентрации инициатора в степени 0,5. Константа скорости реакции в общем случае равна [c.13]

    Такое полимеризационно-деполимеризационное равновесие, как любое термодинамическое равновесие, подчиняется уравнению изотермы реакции Л0= ДС -Ь/ Пп АГ, а К — к поскольку (R-I = [RM ]. Отсюда следует, что для любой концентрации мономера существует 7 , выше которой преобладает деполимеризация, а АЯ° (Д5 4 -Ь/ 1п 1М))- где ДЯ" и Д5 — разность стандартных энтальпий и энтропий образования мономера и полимера при Т , М — концентрация мономера в жидком состоянии. Чаще всего деполимеризация идет через свободные макрорадикалы, и необходимое условие деполимеризации — генерирование свободных радикалов и возникновение мак-рорадииалов со свободной валентностью на конце. Параллельно с деполимеризацией идут другие процессы передача цепи на полимер, отщепление боковой группы, рекомбинация и диспропорционирование двух макрорадикалов. Константа скорости отщепления мономера от концевого радикала к = ,, + q, где — энергия активации присоединения мономера к макрорадикалу д — теплота присоединения мономера к макрорадикалу q 90 кДж/моль (винилацетат) 78 (метилакрилат) 70 (стирол) 58 (метилметакрилат), 35 кДж/моль (а-метилстирол). С высоким выходом мономера деполиме-ризуются полиметилметакрилат, поли-а-метилстирол, полиметакрио-лонитрил, поливинилиденцианид, полистирол. Для чистого мономера [c.287]

    Соотношение констант скоростей реакций поликонденсации кр и циклизации кс определяет соотношение выходов продукта поликонденсации и циклического мономера при постоянной температуре 7  [c.159]

    Оригинальный метод оценки активности различных мономеров был предложен Матыской и Доусеком [287]. Он основан на определении относительных констант скоростей реакции мономеров с ОН-радикалами, В качестве источника ОН-радика-лов авторами использованы реакции между ионом Fe и пероксидом водорода  [c.189]

    Относительная реакцнонноспособность представляет собой отношение константы скорости реакции мономера с макрораднкалом к константе скорости роста для стирола, принятой за 1 константы скорости реакции макрорадикала с чужим мономером рассчитывались, исходя нз значений констант сополимеризации и констант скорости роста цепи для соответствующих мономеров. [c.8]

    Реакция передачи цепи происходит следующим образом. Растущий макрорадикал отнимает у четыреххлористого углерода атом хлора и превращается в мертвый полимер одновременно происходит образование радикала С з, который инициирует полимеризацию мономера. В том случае, когда разность между величиной константы скорости реакции мономера с радикалом СС1з и значением константы скорости реакции роста макромолекулы полистирола невелика, реакции передачи цепи почти не влияют на общую скорость полимеризации. В конце реакции может возникнуть такое положение, когда п—1 = =0 [(см. уравнение (2, 40)]. В качестве примера можно сослаться на опыт Караша, который проводил полимеризацию стирола в четырехбромистом углероде при действии света . При избытке СВг получалось соединение IX почти [c.36]

    Предполагается, что реакционная способность обеих функциональных групп бифункционального мономера одинакова и не зависит от его молекулярной массы [3, с. 46 9, с. 34]. Это предположение подтверждается тем, что константы скоростей многих реакций не зависят от продолжительности процесса и молекулярной массы полимера. Так, константы скорости реакции полиоксиэтилена (молекулярная масса 393) с концевыми гидроксильными группами и 1-бутанола с фенилизоцианатом составляют соответственно 1,5-10 3 и 1,7-10 л/(моль-с) [10]. Однако имеются экспериментальные данные, противоречащие этому. Было изучено влияние молекулярной массы линейных сложных полиэфиров с концевыми гидроксильными группами в диапазоне 400—3000 на скорость реакции их с фенилизоцианатом. При этом установлено, что реакционная способность диэтиленгликольадипината зависит от длины цепи. Константа скорости реакции резко меняется в области молекулярных масс от 400 до 1500 и асимптотически приближается к постоянной величине в диапазоне молекулярных масс от 1500 до 3000 (рис. 1). Установленные закономерности авторы связывают с возрастанием концентрации меж- и внутримолекулярных водородных связей с ростом молекулярной массы полиэфира [11]. [c.158]

    Чалла нашел, что содержание в реакционной смеси мономера при достижении равновесия в 1,6 раза превышает значение, рассчитанное по уравнению Флори, а константа скорости реакции поликонденсации увеличивается по мере роста молекулярной массы. Константа скорости обратной реакции гликолиза при этом оставалась постоянной. На основании расчета Чалла сделал вывод, что отношение константы скорости конденсации молекул полимера между собой к константе скорости реакции взаимодействия мономерного дигликольтерефталата с полимерными молекулами равна 1,8. Отсюда было сделано предположение о неодинаковой реакционной способности однотипных функциональных концевых групп, по крайней мере мономера и полимерных молекул. Более поздние исследования подтвердили принцип одинаковой реакционной способности в реакции обмена сложноэфирных групп в молекулах с относительно высокой молекулярной массой. [c.66]


    Значительно более сложным является вопрос о распределения по молекулярным весам. Ниже этот вопрос будет рассмотрен для начальной стадии полимеризации, когда скорость инициированил н концентрацию мономера, а следовательно, и стационарную концентрацию свободных радикалов можно считать постоянными величинами. Для просто-1 ы рассматривается случай, когда реакцией передачи цепи можно пренебречь. При рассмотрении предполагается, что константа скорости присоединения мономера ко всем свободным радикалам, в том числе и непосредственно образовавшимся из инициатора, одинакова и равна Константы скорости рекомбинации будут предполагаться равными кз для случая рекомбинации любых одинаковых свободных радикалов. Для рекомбинации разных свободных радикалов константа скорости рекомбинации в этом случае [c.363]

    Для каждой пары мономеров параметры и характеризуют отношения реакционных способностей мономеров. Значение r является отношением константы скорости реакции определенного макрорадикала, в котором неспаренный электрон локали- [c.237]

    Рост макрорадмкалов. Реакция роста цепи состоит в присоединении молекул мономера к макрорадикалу. Независимо от характера инициирования рост макромолекулярной цепи начинается с момента присоединения молекулы мономера к первичному радикалу и продолжается до тех пор, пока растущая цепь сохраняет радикальную структуру. Процесс роста каждой макромолекулы длится несколько секунд, константа скорости реакции роста остается постоянной в продолжение всей реакции. Исключение составляют некоторые мономеры, для которых скорость роста цепи снижа( тся с нарастанием вязкости среды. Средняя степень полимеризации фракций полимера, образующихся в начале и в конце процесса, практически неизменна, если реакционная смесь не содержит примесей, легко вступающих в реакцию с макрорадикалами. В присутствии небольших количеств таких примесей средняя степень полимеризации фракций полимера, образовавшихся в начале реакции, остается более низкой до тех пор, пока не будут из расходованы примеси, присутствующие в реакционной смеси. [c.105]

    In — интенсивность падающего и поглощенного света 1 11, /с 12 константы скорости роста цепи, оканчивающейся звеном Ml, при реакции с мономерами М, и Мг соответственно 21 константы скорости роста цепи, оканчивающейся звеном М2, при реакции с мономерами М2 и Mi соответственно 0(11) 0(22) — константы скорости реакций o6pjbiBa при взаимодействии цепей, оканчивающихся одинаковыми звеньями Mi и М2 соот-ветвтвенно [c.5]

    Вычислите константы скорости реакции радикала и-ме-токсистирола (ст = — 0,268, р = 0,462) с мономером Л1-хлорсти-ролом (ст = 0,373), если константа скорости гомополимеризации п-метоксистирола равна 71 л моль с  [c.183]

    Однако в ряде случаев при анионной полимеризации удается избежать реакций ограничения роста. Тогда после превращения всего мономера в реакционной массе сохраняются активные полимерные карбанионы — <иживые цепи , число которых равно числу первоначально введенных молекул катализатора, за вычетом молекул, прореагировавщих с примесями — загрязнениями полиме-ризационной среды, отравляющими катализатор. В простейшем случае кинетика такого процесса определяется только отношением констант скоростей реакций инициирования (й ) и роста (кр). При й > кр для скорости реакции и молекулярной массы выполняются простые соотношения [c.23]

    По мнению Натта [185], скорость полимеризации пропилена на Ti U — А1(С2Н5)з при Al/Ti = 2 8 и постоянной концентрации Ti U не зависит от концентрации АОС. Константа скорости реакции роста зависит от типа АОС, но не от его концентрации, поскольку рост полимерной цепи происходит при встраивании мономера по связи металл переменной валентности — углерод. [c.169]

    Деиолимеризация данной разновидности кремневой кислоты является реакцией первого порядка, которая. может быть охарактеризована конкретной константой скорости реакции. Так как в большинстве растворов кремнезема наряду с высшими полимерами или коллоидными частицами присутствует и мономер, то будет выполняться следующее уравнение  [c.268]

    Ро — общее количество полимера в системе ири г = 0 кт и кр — константы скорости реакции для мономера и полн-1мера соответственно. [c.268]


Смотреть страницы где упоминается термин Константа скорости реакции мономеров: [c.405]    [c.110]    [c.139]    [c.49]    [c.242]    [c.242]    [c.360]    [c.238]    [c.269]    [c.80]    [c.361]    [c.5]    [c.178]    [c.26]    [c.26]    [c.423]    [c.425]    [c.120]    [c.28]   
Свободные радикалы (1970) -- [ c.230 ]




ПОИСК





Смотрите так же термины и статьи:

Константа скорости

Константа скорости реакции

Реакция константа



© 2025 chem21.info Реклама на сайте