Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активные состояния

    При изменении внешних условий пассивный металл может вновь перейти в активное состояние. Этот процесс называют активацией, или депассивацией. Вещества или процессы, нарушающие пассивное состояние металлов или затрудняющие наступление пассивности, называют активаторами или депассиваторами. [c.306]

    Пассивированные металлы имеют иные химические и электрохимические свойства, чем металлы в обычном, активном состоянии. Пассивное железо не вытесняет медь из растворов ее [c.635]


    Рассмотрим открытую безградиентную систему, состоящую из катализатора и компонентов реакционной смеси, за счет реакций с которыми состав катализатора может изменяться (назовем их реакциями катализатора). Для конкретности рассматривается реакция газов на твердых катализаторах [78]. Предположим, что в системе возможно протекание конкурирующих реакций катализатора, в результате которых может происходить переход активного состояния поверхности катализатора К в термодинамически устойчивое ЛГт и последующая регенерация активного состояния К. Термодинамически устойчивое состояние отвечает химическому равновесию для подсистемы — катализатор. В данном случае возможно протекание трех типов реакций реакция катализатора (дезактивация) [c.301]

    Известно, например, что пятихлористая сурьма распадается на треххлористую сурьму и свободный хлор, который выделяется в активном состоянии и сразу соединяется с углеводородом. Равным образом это относится к хлористым соединениям серы и фосфора. [c.149]

    Торможение процесса растворения по адсорбционному механизму должно иметь особое значение на стадии перехода от активного состояния металла к пассивному. [c.484]

    Очевидно, существует такое, состояние системы, когда количество ассоциатов и сложных структурных единиц минимально, размеры их незначительно отличаются от размеров молекул и частиц основной массы дисперсионной среды, т. е. система находится в состоянии, характерном для истинных молекулярных растворов. Или, применяя терминологию физико-химической механики, система находится в активном состоянии. [c.27]

    Чтобы реализовать активное состояние и извлечь из него максимальную выгоду для процесса должны быть изучены дисперсный состав сырья, выявлены особенности структурных изменений сьфья в процессе нагрева, в частности в атмосфере водорода. Необходимо подобрать оптимальную скорость подъема температуры с минимальной длительностью нагрева для создания условий эффективной диффузии сырья в поры катализатора и эвакуации продуктов реакции с минимальными вторичными превращениями. Это является весьма сложной задачей, для решения которой должны быть использованы все современные инструментальные методы исследования нефтяных дисперсных систем с привлечением математических методов. [c.27]


    Инициирование переводит молекулу мономера в активное состояние, в котором она способна реагировать с другой молекулой. Переход молекулы в активное состояние возможен под действием света, тепла, различных излучений или инициаторов. В качестве инициаторов могут применяться кислород, органические перекиси, гидроперекиси и другие соединения. [c.49]

    По В. П. Батракову (1962 г.), интенсивной линейной локализованной коррозии вследствие приложенных извне или внутренних напряжений подвержены границы зерен или блочных структур, своеобразные группировки атомов по кристаллографическим плоскостям, дислокации и другие искажения кристаллической решетки, находящиеся в активном состоянии. [c.335]

    В мономолекулярной реакции переход молекулы в активное состояние схематически можно представить так  [c.171]

    Можно полагать, что в этом случае агломерация окиси свинца затрудняется и соединение сохраняется в активном состоянии более длительное время. [c.144]

    Можно предполагать, что образова ние активной частицы возможно при со ударениях двух молекул ц с-изомера гранс-изомера или цис- и гранс-изомеров а также молекулы изомера и какой-ни будь нейтральной молекулы. Однако экспериментальные данные [3] показывают, что, например, молекулы N2 и СзНе не активируют реакцию 1 ыс-гранс-изомеризации. Поэтому, в соответствии с экспериментальными данными, более правильно предположить, что активное состояние может возникнуть только при соударениях двух одинаковых молекул. Это согласуется и с представлениями теории активного комплекса, по которой частоты колебаний превращаемой связи в исходных веществах и в активном комплексе близки. [c.54]

    Эффективная энергия активации Е при таком подходе отождествляется с энергией процесса активации iS.ll. Высказав идею о роли активного состояния молекулы, Аррениус не подошел к понятию переходного состояния. Исторически первым направлением в развитии взглядов Аррениуса была разработка теории активных столкновений на базе молекулярно-кинетических представлений. Рассмотрим одностороннюю адиабатическую реакцию второго порядка, протекающую в газовой фазе. Дополним положения Аррениуса еще одним. Будем считать активными такие столкновения, в которых суммарная энергия сталкивающихся, энергетически возбужденных молекул А и Аг равна или больше Е . Из молекулярно-кинетической теории следует, что общее число столкновений молекул А, и Аа в единице объема за единицу времени гп определяется уравнением [c.564]

    Предложено много теорий пассивности металлов. Это связано с трудностью объяснения всей сложной совокупности явлений, происходящих при переходе металлов из активного состояния в пассивное и обратно. [c.306]

    Адсорбция кислорода или другого окислителя сопровождается поглощением электронов из металла и образованием незаполненных электронами d-уровней в металле, что переводит его в пассивное состояние. Адсорбция водорода или другого восстановителя сопровождается отдачей металлу электронов и заполнением электронами -уровней, что переводит его в активное состояние. [c.309]

    Активное состояние Пассивное состояние Состояние перепассивации  [c.313]

    Таким образом, для основного металла при его коррозии в обычных условиях (растворении в активном состоянии) катодные контакты могут быть опасными, а анодные — защитными. [c.358]

    Явления перенапряжения представляют не только теоретический, но и практический интерес, в частности перенапряжение водорода. Для иллюстрации этого можно указать, что выделение путем электролиза таких металлов, как Ре, РЬ, 2п, которые стоят выше водорода в ряду напряжений, может осуществляться только благодаря тому, что они обладают перенапряжением, значительно меньшим, чем перенапряжение водорода на этих металлах, в особенности при высоких плотностях тока. Поэтому потенциал выделения его становится большим, чем потенциал выделения этих металлов. В случае применения тока большей плотности при высоком перенапряжении можно получать вещества в более активном состоянии. [c.452]

    Так, потенциал железа, который в активном состоянии около —0,4 в, ь пассивном состоянии возрастает до + 1 а. [c.61]

    Запассивированный металл теряет некоторые свои свойства, которыми он обладает в активном состоянии так, запассивированное железо не вытесняет медь из раствора медных солей это происходит вследствие сдвига потенциала пассивированной поверхности в положительную сторону. [c.61]

    Полученные данные лншь частично > арактеризуют активное, пассивное II трапспассивпое состояния металлов и определяют условия, при которых можно ожидать реализации каждого из них. Они ничего не говорят о причинах перехода металла из активного состояния в пассивное и из пассивного е1 транспассивное. Для объяснения явления пассивности были предложены две теории — пленочная и адсорбционная. В пленочной, или фильмовой (Кистяковский), теории пассивности, берущей начало от Фарадея, предполагается, что переход металла из активного состояния в пассивное вызван образованием на его поверхности тонкого, обычно оксидного, слоя, отделяющего металл от окружающей среды и препятствующего, таким образом, его растворению. Образующийся оксидный слой имеет толщину в несколько молекулярных слоев, и его можно рассматривать как фазовый оксид. Чем совершеннее структура оксидного слоя, чем меньше в нем разрывов и дефектов, тем полнее пассивация и тем меньше скорость растворения металла в пассивном состоянии. Одним из доказательств справедливости пленочной теории служит от факт, что для многих металлов, например для меди, [c.481]


    На первой стадии исходные молекулы А, и Аа, сталкиваясь с другими молекулами, переходят в энергетически возбужденное, активное состояние а и А Процесс активации молекул А) и А протекает с высокими скоростями как в прямом, так и в обратном направлениях. Скорость реакции на второй стадии относительно невелика и лимитирует общую скорость процесса. Концентрации активных молекул малы, значительно меньше концентрации реагирующих молекул А1 и Аг, т. е. й с и Са > Процесс активации протекает с высокими скоростями, поэтому можно принять, что на стадии активации устанавливается равновесие, которое определяется константой равновесия К. Будем рассматривать систему как идеальную. Тогда [c.563]

    Из (211.19) следует, что в качестве кинетического критерия реакционной способности химической системы, протекающей при постоянном объеме, можно принять нормальное сродство АЛ процесса активации реагирующих молекул. Значение АЛ определяет изменение энергии Гельмгольца в процессе перехода исходных молекул в активное состояние. [c.567]

    Эта область потенциалов отвечает активному состоянию металла, когда он вгдет себя как растворимый анод. При достижении некоторого значения потенц,1ала (более положительного, чем исходная величина) плотность тока резко падает, что указывает на внезапное замедление процесса растворения. В довольно широких пределах потенциалов плотность тока, а следовательно, и скорость растворения почти не изменяются, оставаясь очень малыми. Эта область потенциалов от зеча-ет пассивному состоянию. Участок по- [c.479]

    Для обеспечения возможности комплексной оценки структуры нефтяных остатков, их структурно-механической устойчивости и опре-. деления численных значений показателей по эмпирическим зависимостям (1-1)-(1-7) необходимо знание компонентного состава, распределения компонентов по размерам молекул, частиц и ассоциатов, закономерностей изменения реологических свойств и показателя дисперсности, плотности и ряда других показателей физико-химических свойств. От степени информации по указанным показателям зависит выбор эффективных и рациональных способов воздействия на сырье каталитического гидрооблагораживання с целью перевода его в активное состояние- К числу таких способов воздействия следует отнести такие технологические приемы, как испарение и осаждение, приводящие к изменению соотношения объема дисперсионной среды и дисперсной фазы- Рассмотрим основные экспериментальные методы, используемые в исследовательской практике для оценки вышеуказанных показателей. [c.30]

    Дальнейшее развитие учения о катализе шло как по пути накопления экспериментальных данных, разработки способов приготовления активных катализаторов, открытия и изучения новых каталитических процессов, внедрения катализа в химическую промышленность, так и по пути развития теории гетерогенного катализа. Однако успехи теоретиков были значительно более скромными, чем успехи экспериментаторов. И это не случайно. Хотя принципиальной разницы между каталитическими и некаталитическими процессами нет, и те и другие подчиняются основным законам химической кинетики, в обоих случаях система реагирующих веществ проходит через некоторое особое, обладающее повышенной энергией активное состояние, в гетерогенных каталитических реакциях наблюдаются специфические особенности. Прежде всего появляется твердое тело, от свойств и состояния которого существенно зависят все явления в целом. Поэтому не случайно, что успехи теории гетерогенного катализа неразрывно связаны с развитием теории твердого тела. Поскольку процесс идет иа поверхности, знание строения поверхности катализатора оказывается решающим для развития теории катализа. Отсюда вытекает тесна я связь развития теории катализа с развитием экспериментального и теоретического изучения адсорбционных явлений. Сложность кетероген-ных процессов, присущие им специфические черты, приводят к тому, что теоретические исследования в этой области не завершилась еще построением теоретических концепций, на базе которых можно было бы обобщить имеющийся фактический ма-териал. Пока можно только говорить о наличии нескольких теорий, в первом приближении обобщающих те или иные экс- периментальные данные. [c.294]

    Одиночный (находящийся на поверхности) атом в первом из этих состояний обладает двумя свободными валентностями и может образовывать промежуточное соединение с кислородом. Два последних состояния ие обладают свободными валентностями, но для одиночных атомов не исключена возможность активирования в ходе самого процесса. Если же на поверхности находится неодноатомный ансамбль, то в активном состоянии в результате спинового взаимодействия между и -оболочками соседних атомов ансамбля эти оболочки взаимно насыщают свои валентности, и образование промежуточного соединения будет затруднено (если не исключено). Поэтому активным центром при окислении кислородом является одноатомный ансамбль. [c.362]

    Изменения катализатора при воздействии реакционной смеси и каталитической реакции приводят к дополнительному уменьшению свободной энергии и увеличению энтропии системы в целом, В то же время энтропия собственно катализатора (подсистемы) уменьшается, а свободная энергия возрастает. Это положение становится очевидным уже из того, что, в рассмотренной системе при исключении катализа должен пойти самопроизвольный процесс К Кт. Другими словами, катализатор в таких системах играет роль своеобразной энергетической ловушки, в которой накапливается также отрицательная энтропия . Здесь просматривается интересная аналогия с биологическими системами, неотъемлемая функция которых — порождение отрицательной энтропии и свободной энергии за счет протекающих в организме процессов переработки питательных веществ [79]. Можно сказать, что в каталитических системах существует механизм молекулярной селекции, обусловленной устойчивостью различных активных состояний. Цапомним, что устойчивость активного состояния (соединения) в каталитической реакции тем выше, чем больше оно удалено от равновесного и чем больше, следовательно, его запас свободной энергии и отрицательной энтропии [80]. [c.303]

    При Гре < п ( 1Г. II —потенциал полной пассивности) железо активно и переходит в раствор в виде ионов Ре2 + -тН20, при Уг-е>Уп, п железо пассивно и переходит в раствор в виде ионов Ре ь./лНзО со скоростью, на несколько порядков меньше, чем в активном состоянии (г = 7-10 А/см ). При достаточно высоких значениях потенциала Уре > (УоЛобр в области возрастающей плотности тока начинается электролитическое выделение кислорода по реакции [c.305]

    Кривая (Ум )обр АВС на рис. 216 соответствует логарифмической (тафелевской) зависимости V от а при растворении металла в активном состоянии по уравнению (271). Точка В соответствует Уадс или Уме о, /2, Т. е. началу адсорбции кислорода или образованию защитной пленки, что приводит к дополнительной поляризации процесса и отклонению поляризационной кривой от простой логарифмической зависимости. [c.315]

    Из рис. 216 следует, что если полностью запассивированный металл катодно заполяризовать до потенциала, отрицательнее Уп. п металл переходит в активное состояние. Эта активация металла может быть обусловлена а) подщелачиванием электролита у поверхности металла при катодной поляризации, приводящим к растворению защитной окисной пленки А12О3 б) катодным восстановлением окисных пленок (на Си, N1, Ре) в) механическим разрушением защитной пленки, выделяющимся при катодной поляризации газообразным водородом. [c.320]

    I — область активного состояния Л — область частичной запассивированности III — область пассивного состояния IV — область [c.458]

    Еще во второй половине XIX века на основании опытных данных был сделан вывод, что свободные атомы некоторых элементов обладают значительно большей реакционной способностью, чем состоящие из них обычные двухатомные молекулы. Это было хорошо установлено, например для водорода в момент выделения (in statu nas endi). Обобщая имеющийся материал, Энгельс писал о большой роли, которую свободные (валентно ненасыщенные) атомы О, И, N и другие играют при химических взаимодействиях благодаря своей высокой реакционной способности. Обладая большей энергией, они находятся в активном состоянии и легко вступают во взаимодействия [c.483]

    Опред< ляем число молекул, находящихся в активном состоянии  [c.371]

    В активном состоянии металлы поляризуются анодно сравнительно слабо, что видно из пологого хода начального участка АБ анодной поляризационной кривой (рис. 14). На участке кривой АБ протекает процесс активного растворения металла с незначительным смещением потенциала в положительном иаправ- [c.34]

    Переход поверхности металла в активное состояние облегчается, если в растворе присутствуют некоторые анионы. К числу сильных активаторов в порядке их способности к депассивации относятся С1 > В1 > J . Особенно часто в растворах встречается хлор-ион. Его активирующее действие проявляется как 3 кислотах, так и в нейтральных или щелочных растворах. Характерным является то, чю и присутствии хлор-иона растворение металла часто идет не по всей поверхности, я толь1<о п л отдельны.х участках (точечная 1чоррозия). [c.61]

    Развитие коррозионного процесса можно фиксировать фотографированием. В носледние годы для качественной оценки коррозионного процесса привлечен и способ микрокиносъемки. Применение последнего способа позволяет исследовать кинетику коррозиониого процесса, диффузионные явления, возникновение пассивности металлов, переход металлов в активное состояние, развитие коррозионных трещгт и других сложных яв.лений. Способ микроскопического исследования позволяет использовать возможности убыстреиЕЮЙ и замедленной съемки. [c.335]


Смотреть страницы где упоминается термин Активные состояния: [c.479]    [c.480]    [c.480]    [c.67]    [c.150]    [c.301]    [c.248]    [c.61]    [c.65]    [c.161]    [c.39]    [c.568]    [c.593]    [c.127]   
Механохимия высокомолекулярных соединений Издание третье (1978) -- [ c.15 , c.43 ]

Механохимия высокомолекулярных соединений (1971) -- [ c.3 , c.12 , c.15 , c.16 , c.22 , c.36 ]




ПОИСК







© 2025 chem21.info Реклама на сайте