Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стеклование как основной релаксационный процесс в полимерах

    СТЕКЛОВАНИЕ КАК ОСНОВНОЙ РЕЛАКСАЦИОННЫЙ ПРОЦЕСС В ПОЛИМЕРАХ [c.35]

    Релаксационная спектрометрия полимеров в настоящее время находится в начальной стадии развития, но ей принадлежит, по-видимому, большое будущее. Важны развитие и разработка новейших методов получения непрерывных и дискретных спектров и применение их для расчетов и прогнозирования вязкоупругих свойств полимерных материалов. Очевидно, что разработка современных методов расчета и прогнозирования невозможна без знания всех релаксационных механизмов и их кинетических характеристик для различных полимерных материалов и особенно для тех, которые находятся в условиях длительной эксплуатации. В настоящее время можно считать установленными основные релаксационные пере ходы в полимерах, которые необходимо учитывать при прогнозировании их свойств. В частности, это относится к новым данным по релаксационным переходам (а -, Хг, кз- и ф-переходы), находящимся по шкале времен релаксации между а-процессом (стеклованием) и б-процессом (химической релаксацией). Для прогнозирования эксплуатационных вязкоупругих свойств эластомеров при относительно низких температурах наиболее важную роль играют медленные физические процессы релаксации ( - и ф-процессы), так как в течение длительного промежутка времени (до 50 лет) химической релаксации практически не наблюдается. Однако при высоких температурах для длительного прогнозирования основную роль начинает играть химическая релаксация. [c.144]


    Выше температуры хрупкости в области квазихрупкого разрушения вплоть до 50 °С деформационное размягчение полимера, являюш,ееся следствием релаксационной природы его деформации, еще достаточно не развито, и основным механизмом разрушения остается термофлуктуационный механизм. Релаксационные процессы, хотя и выполняют важную функцию, снижая концентрацию напряжений и уменьшая флуктуационный объем, однако не изменяют термофлуктуационной природы разрушения полимера, характерной для низких температур. Выше 50°С вплоть до температуры стеклования (100°С), вероятно, относительно большую роль в механизме разрушения начинает играть релаксационный процесс деформационного микрорасслоения, и существенный вклад в долговечность дают трещины серебра , а также ориентация полимера под нагрузкой. В настоящее время отсутствуют более подробные экспериментальные данные в этой третьей температурной области. Поэтому дальнейшее обсуждение роли релаксационных процессов в разрушении полимера имеет смысл провести только для температурной области ПММА от —29 С до 50°С. [c.207]

    В эластомере выше Тс действуют два основных релаксационных механизма. Один из них, а-процесс (см. рис. 7.2), связан с молекулярной подвижностью свободных сегментов и цепей, не входящих в микроблоки надмолекулярных структур (физические узлы). Он ответственен за релаксационные процессы в переходной области от стеклообразного к высокоэластическому состоянию и за быструю высокоэластическую деформацию выше температуры стеклования. Другой механизм относится к Я-про-цессам (см. рис. 7.2), наблюдаемым в области высокоэластического плато и ответственным за медленную высокоэластическую деформацию. Процессы А-релаксации возникают благодаря существованию в полимере различных типов микроблоков (упорядоченных микрообластей) термофлуктуационной природы. Эти процессы характеризуются различными временами релаксации и одной и той же энергией активации. Они играют основную роль в разрушении эластомеров. [c.228]

    Локальность нагрева материала (теплоизоляционного по своей природе и имеющего высокий температурный коэфф. объемного расширения) при тепловой С. или сильное набухание полимера только в зоне шва при С. с помощью растворителей приводит к тому, что в слоях материала, расположенных в зоне шва, возникают остаточные напряжения, к-рые постепенно уменьшаются вследствие релаксационных процессов. По этой причине сварные изделия часто передают на эксплуатацию спустя нек-рое время после их изготовления. Продолжительность выдержки (иногда до нескольких суток) зависит от типа свариваемого материала, конструкции изделия, условий его хранения и др. Многие эксплуатационные характеристики изделий, получаемых тепловой С., могут снижаться вследствие деструкции полимера в зоне шва или интенсивного расхода стабилизатора, к-рый предотвращает этот процесс. Термоокислительную деструкцию предупреждают при проведении С. в инертной среде расход стабилизатора компенсируют, вводя в зону шва большее его количество, чем в основной материал. Улучшению качества соединений способствует также нагрев только зоны соединяемых поверхностей, термообработка сварных изделий при темп-ре, близкой к темп-ре стеклования полимера, введение в зону шва способствующих повышению его прочности структурообразователи и (или) наполнителя. [c.186]


    Электрическая прочность (Епр) ароматических полиамидов для образцов малой толщины очень высока ( пр = 200—250 кВ/мм при толщине пленки 50—100 мкм), но сильно уменьшается с ростом толщины образца ( пр = = 20 кВ/мм при толщине 3 мм). Электрическая прочность очень слабо зависит от температуры пр практически не изменяется при нагревании полимера до 200 °С. Как и все полярные полимеры, ароматические полиамиды имеют большую величину диэлектрических потерь б имеет порядок 10 . При исследовании диэлектрических свойств ароматических полиамидов был зафиксирован [7] один релаксационный процесс (Р-процесс) ниже температуры стеклования (при —70 °С и частоте 1 Гц) [34], совпадающий с обнаруженным динамическим механическим методом. Такое совпадение свидетельствует об идентичности кинетических единиц, реагирующих на воздействие электрических и механических полей. Это можно объяснить тем, что полярная группа находится в основной цепи макромолекулы. [c.196]

    Лучший обзор того, что было достигнуто с помощью этого метода в течение наиболее активного периода, содержится в книге Тобольского [2]. Метод абсолютно справедлив в области температуры стеклования и вблизи нее, но дает количественное расхождение с прямыми экспериментами ниже этой температуры. Основная причина такой неадекватности состоит в том, что на поведение полимера в стеклообразном состоянии влияют не только молекулярные релаксационные процессы. Есть еще одна существенная причина, по которой наблюдаемые факторы сдвига для этой области в высшей степени ненадежны. Так, когда наклон зависимости отклика от логарифма времени невелик по сравнению с тем, что имеет место в области стеклования, малая экспериментальная ошибка измерения отклика соответствует большой ошибке Ит. В дополнение к этому наложение экспериментальных кривых на обобщающую включает субъективное суждение относительно того, что представляет собой эта хорошая суперпозиция. Вновь это оказывается менее надежно для плоских кривых, когда на них нет характерных особенностей типа крутизны или резкого изменения наклона. [c.102]

    Переработка полимеров связана с изменением их физического состояния в результате нагревания или, наоборот, охлаждения. В производстве пленок процессы формования происходят зачастую в переходных областях в области температуры стеклования — ориентация пленок, основанная на явлении вынужденной эластичности в области температуры текучести — каландрование поливинилхлорида и получение полых изделий из жестких пленок методами вакуумного и пневматического формования, при которых основную роль играют пластические деформации полимера. В этих областях в наибольшей степени проявляются релаксационные процессы, зависящие от температурно-временного режима переработки и свойств перерабатываемого полимера. [c.49]

    Что касается температуры, то ее влияние на характер развития аномалии вязкости наиболее резко проявляется непосредственно при приближении к температуре стеклования, поскольку при этом появляются новые релаксационные процессы, или другими словами, разные времена релаксации из спектра начинают изменяться в зависимости от температуры по-разному. Если же отойти достаточно далеко от температуры стеклования, то роль этого фактора нивелируется и начинает выполняться принцип температурно-временной аналогии, т. е. все времена релаксации изменяются в зависимости от температуры эквивалентным образом. Это означает, что форма кривых течения полидисперсных полимеров при разных температурах в области, достаточно далекой от стеклования (этот случай представляет основной прикладной интерес), должна быть одинаковой и особенности их релаксационных свойств должны передаваться одним характерным значением времени релаксации. [c.193]

    Стеклование сопровождается скачкообразным изменением удельного объема (приближением к минимуму свободного объема) и резким замедлением релаксационных процессов в полимерах. Одновременно происходит и формирование структуры (в основном неравновесной), свойственной твердому состоянию вещества. [c.39]

    Стеклование полимеров является релаксационным процессом. Его связывают с релаксацией, т. е. перемещением сегментов макромолекул, содержащих 5-20 атомов основной цепи (в зависимости от ее гибкости). Этот процесс носит ярко выраженный кооперативный характер. [c.149]

    Итак, основной вывод заключается в том, что на температурной зависимости скорости звука, кроме ступенек , которые соответствуют различным механическим релаксационным переходам имеются точки излома, которые относятся к структурным релаксационным переходам. На рис. IX. 16 таких точек излома две А и В). Обычно легко обнаруживается точка излома (см. рис. IX. 9), указывающая на температуру структурного стеклования Гст. Другие точки излома могут быть незамеченными вследствие недостаточной точности эксперимента. Для некоторых полимеров наблюдаются два а- и два р-процесса. В этом случае число изломов возрастает. [c.236]


    В переменных электрических полях наблюдаются аналогичные механическим диэлектрические дипольно-сегментальные потери, природа которых та же — сегментальная подвижность. В полимерных стеклах сегментальная подвижность играет важную роль, так как является причиной многих явлений (стеклование, вынужденная высокоэластичность, ползучесть, квазихрупкое разрушение, трещины серебра и т. д.). В кристаллических полимерах сегменты могут находиться в трех различных состояниях, а в наполненном аморфном полимере — в двух состояниях, что приводит к мультиплетности релаксационных спектров а-процесса релаксации. Основным при этом остается а-процесс, ответственный за стеклование. Его вклад, как можно судить по высоте максимумов на спектрах, существенно больше, чем остальных процессов этой группы. [c.199]

    Для ряда органических твердых тел, особенно для аморфных высокополимерных соединений, в температурном интервале выше точки перехода в стеклообразное состояние была обнаружена возможность соотнести температурную и частотную зависимость релаксационных свойств. Соответствующий метод, развитый в основном Тобольским и др. [261] и Ферри и др. [56], основан на использовании так называемых приведенных переменных . Этот метод оказался весьма успешным при его применении к поведению каучукоподобных веществ. Хотя приближения, на которых основан метод, не могут быть применены к поведению органических твердых тел ниже точки стеклования, по-видимому, имеет смысл дать здесь краткое описание этого метода, так как, во-первых, были осуществлены некоторые попытки применить его к процессу релаксации в твердых аморфных и частично кристаллических полимерах и, во-вторых, область справедливости приближений, использованных при построении теории вязко-упругости и в методе приведенных переменных, может быть оценена. [c.336]

    В четвертой главе подробно освещен термомеханический метод определения температуры стеклования и текучести полимеров, проанализированы особенности интерпретации термомеханических кривых для аморфных и кристаллических полимеров, приведен расчетный метод определения по химическому строению полимера величины механического сегмента. Рассмотрены две основные концепщш механизма процессов застекловьшания полимеров - релаксационная и межмолекулярная. Рассматривается более универсальный, чем широко распространенный групповой подход расчета свойств полимера по их химическому строению, атомистический подход, с использованием которого получены аналитические выражения для расчета по химическому строению температуры стеклования линейных и сетчатых полимеров. Выполнен анализ влияния типов разветвлений линейных полимеров, а для сетчатых полимеров - числа звеньев между узлами сшивки, типа и строения этих узлов, наличия и вида дефектов сетки на температуру стеклования полимеров. [c.15]

    Изменение молекулярной подвижности имеет следующие основные следствия. Оно ведет к повышению температур переходов, прежде всего — температуры стеклования, к изменению условий кристаллизации и к изменению релаксационного поведения полимера в поверхностных слоях. В последнем случае это влияние проявляегся двояким образом в ходе формирования полимерного материала из расплава или раствора, при полимеризации и в ходе эксплуатации уже готового полимерного материала. Ограничение молекулярной подвижности в поверхностных слоях при формировании полимера приводит к торможению релаксационных процессов и возникновению неравновесного напряженного состояния по сравнению с состоянием полимера в отсутствие твердой поверхности. В результате в системе возникает неплотная молекулярная упаковка и наполненный полимер может иметь в среднем меньшую плотность в расчете на полимер, чем ненаполненный. [c.181]

    Тем не менее высокая кооперативиость молекулярного движения, которая наблюдается у ряда полимеров при стекловании, отнюдь не позволяет считать стеклование термодинамическим фазовым переходом. Многочисленными исследованиями было показано, что стеклование не является фазовым переходом, а представляет собой температурный переход релаксационного типа. С точки зрения релаксационной теории переход в стеклообразное состояние можно рассматривать как релаксационный процесс, который не мог завершиться в результате очень сильного повышения вязкости системы и связанного с этим резкого увеличения времени релаксации при понижении температуры. Таким образом, в стеклообразном состоянии оказывается зафиксированной структура, которая более или менее близка к равновесной для температуры более высокой, чем температура стеклования Т Следует заметить, что с точки зрения релаксационной теории стеклообразное состояние полимеров — это состояние, при котором выполняется условие oTj l (где со — частота периодического воздействия на полимер, X — время релаксации) для всех Tj, обусловленных сегментальной подвижностью основных цепей макромолекул. [c.92]

    Следующий температурный переход, происходящий при более низких температурах, получил название р-перехо-да ( 3-релаксация). К этому температурному переходу, расположенному в области стеклообразного состояния, обычно относят релаксационные процессы, обусловленные движением боковых групп или небольших элементов основной цепи. Это привело к тому, что под 3-релак-сацней понимают самые различные температурные переходы. Например, если для полиметилметакрилата под (3-релаксацией понимают процесс, связанный с реориен-тационным движением бо ковых цепей [14], то для поли-трифторхлорэтилена под -релаксацией понимают процесс, обусловленный стеклованием аморфных областей [8], а для кристаллического политетрафторэтилена так обозначают [14] фазовый переход, в результате которого изменяется тип элементарной ячейки этого полимера. Было предложено [15] относить к р-релаксации только процессы, обусловленные движением боковых групп. Кажущаяся энергия активации процессов р-релаксации составляет 63—167 кДж/моль. [c.265]

    В том случае, когда кристаллический полимер находится при температурах более низких, чем температура стеклования аморфной прослойки, наиболее интенсивные релаксационные процессы, вносящие основной вклад в релаксационный спектр Э МОрфного образца, могут оказаться замороженными , и динамический модуль упрз гостн полностью аморфного полимера может стать достаточно большим (порядка 10 —10 МПа), а динамическая податливость соответственно малой. Часто это связано с весьма эффективным межмолекуляр-ным взаимодействием кинетических элементов соседних макромолекул, находящихся в стеклообразном состоянии. [c.272]

    Нрюбхолимо попчеокнуть. что во многих случаях отнесение релаксационных процессов весьма условно и не является тким простым, как для акрилатных и метакрилатных полимеров. Например, в аморфном полиэтилентерефталате наблюдаются два главных релаксационных перехода. Высокотемпературный переход обусловлен стеклованием и связан с движением основных молекулярных цепей. Вторичная релаксация может быть условно приписана или движению концов цепей, или какому-то локальному движению главной цепи [5—8]. В этом случае иное объяснение исключается, так как в этом полимере нет боковых групп. [c.156]

    Ряд исследователей считает, что релаксационные процессы, обуслоЕленные молекулярной подвижностью в низкотемпературной области, являются ответственными за высокую ударную вязкость и динамическую (ударную) прочность поликарбоната. Предполагается - , что ниже температуры стеклования у поликарбоната сохраняется еще достаточно большой свободный объем, который создает возможности для реализации достаточно интенсивной молекулярной подвижности, не связанной с сегментальным движением больших элементов основной цепи, и обусловливает высокую ударную вязкость этого полимера. В связи с этим возникает вопрос о молекулярном механизме релаксационных процессов в поликарбонате, определяющих его уникальные механические свойства. [c.120]

    С точки зрения структурных особенностей эластомера, учитывающих надмолекулярную флуктуацпонную структуру (гл. 2), роль бусинок больших размеров в структуре эластомера должны играть микроблоки. Последние являются объемными физическими узлами молекулярной сетки линейного полимера с временами жизни, соответствующими временам релаксации Я-процессов. Хотя микроблоки в эластомерах по объему занимают около 20%, а основную часть объема занимают свободные цепи и сегменты, роль микроблоков выше температуры стеклования, где скорость релаксационных процессов лимитируется подвижностью физических узлов-микроблоков, очень существенна. [c.142]

    В 1939 г. А. П. Александровым и Ю. С. Лазуркипым была разработана мето Дика исследования высокоэластической деформации на периодическом режиме в широком интервале частот и температур [5]. Благодаря этому ими были открыты основные закономерности кинетики высокоэластической деформации, изучено влияние частоты воздействия на экспериментально наблюдаемую температуру затвердевания и сформулиро<вано ныне обш,епринятое представление о природе стеклования полимеров [6]. Результаты этих работ вошли в ряд монографий и учебников. Был вьшвлен единый механизм процесса деформирования таких разных полимеров, как каучуки, пластмассы и т. д., и показано, что свойства полимеров существенно зависят от температуры и скорости воздействия, т. е. в них чрезвычайно ярко выражены релаксационные процессы. [c.317]

    Р-Переходы также представляют собой, как правило, сложные процессы и их отнесение еще более затруднено. Для эпоксидных смол они исследованы более подробно [1, 66], однако полученные данные не позволяют сделать общих заключений. В ряде работ [61, 66—68] не обнарун<ено зависимости температуры максимума 3-перехода от концентрации узлов сетки. В то же время, по данным работ [25, 69], увеличение плотности сшивания эпоксидного полимера за счет уменьшения молекулярной массы олигомера или функциональности амина приводит к значительному увеличению Гр, причем авторы этих работ считают возможным по изменению 7 р контролировать степень отверждения полимеров, так как этот максимум лежит в области стеклообразного состояния, и при его определении не вызывает доотверждения полимера, которое происходит при нагревании недоотвержденного полимера выше температуры стеклования. Если правильно указанное выше отнесение р-перехода к движению оксиэфирного фрагмента —О—СН2—СН (ОН) —СНг— основной цепи молекулы [67], то повышение Гр может быть связано с общим уменьщением подвижности цепи при увеличении плотности сшивания. Релаксационные 7- и р-переходы слишком сложны и мало исследованы, чтобы можно было делать какие-либо общие заключения, однако они дают информацию о молекулярном движении в стеклообразном состоянии и в значительной степени определяют характеристики эпоксидных полимеров в этой области. [c.65]

    Механизмы взаимодействия полимер — субстрат можно свести, по существу, к двум основным типам энергетическому, базирующемуся на молекулярном взаимодействии поверхности субстрата с макромолекулами (или молекулами олигомера и т. д.) и конформационному, или стерическому, заключающемуся в том, что наличие твердой поверхности пространственно затрудняет полимеру (или олигомеру в момент отверждения) возможность занимать определенный объем. В том и другом случае меняются плотность упаковки в контактной зоне, структура пограничного слоя и связанные с этим физико-химические свойства полимеров, в том числе его релаксационные характеристики, температура стеклования и (иногда) прочность. Хотя часто преимущественным является энергетический механизм, но стерические препятствия для формирования структуры иодчас преобладают над энергетическим фактором. В то же время, кинетика процесса сильно зависит от поверхностной энергии твердой поверхности. [c.83]

    Делались попытки классифицировать низкотемпературные (у) процессы потерь как обусловленные либо крутильными колебаниями ( локальные релаксационные моды ) основной цепи и каких-либо боковых групп, либо крутильными колебаниями одной только боковой цепи в аморфных или дефектных областях. Это означает, что такой переход должен фиксироваться во всех полимерах, если только стеклование и связанное с ним микроброу-новское движение не происходят при столь низких температурах, что указанный переход затемняется. Процесс 7-релаксации следует ожидать при тем более высоких температурах, чем больше масса боковой цепи (цепей) следовательно, если он появляется для структур [c.412]


Смотреть страницы где упоминается термин Стеклование как основной релаксационный процесс в полимерах: [c.158]    [c.192]    [c.179]    [c.20]    [c.136]    [c.186]    [c.84]   
Смотреть главы в:

Физика и механика полимеров -> Стеклование как основной релаксационный процесс в полимерах




ПОИСК





Смотрите так же термины и статьи:

Процессы стеклования полимеров

Стеклование полимеров



© 2024 chem21.info Реклама на сайте