Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Парафиновые углеводороды плотность

Рис. 25. Зависимость теплоемкости нефтепродуктов от температуры. Числа на кривых от 0,55 до 2,0 соответствуют относительной плотности (по воздуху) газообразных парафиновых углеводородов от 0,700 до 1,00—относительной плотности жидких нефтепродуктов. Рис. 25. <a href="/info/301222">Зависимость теплоемкости</a> нефтепродуктов от температуры. Числа на кривых от 0,55 до 2,0 соответствуют <a href="/info/7324">относительной плотности</a> (по воздуху) <a href="/info/413350">газообразных парафиновых углеводородов</a> от 0,700 до 1,00—<a href="/info/7324">относительной плотности</a> жидких нефтепродуктов.

Рис. 23. Зависимость плотности нормальных жидких парафиновых углеводородов от относительной молекулярной массы Рис. 23. Зависимость <a href="/info/1285092">плотности нормальных жидких</a> <a href="/info/11721">парафиновых углеводородов</a> от <a href="/info/6878">относительной молекулярной</a> массы
    Плотность фракций зависит как от фракционного, так и химического состава топлив. Плотность повышается с увеличением температуры выкипания 50% фракций. Плотность углеводородов возрастает от парафиновых, нафтеновых к ароматическим. Среди парафиновых углеводородов высокую плотность имеют парафины разветвленного строения. [c.29]

    Как правило, при одном и том же числе углеродных атомов в молекуле углеводороды с разветвленной цепью отличаются от углеводородов нормального строения более низкими плотностью, температурой застывания и температурой кипения. Парафиновые углеводороды с разветвленной цепью придают высокое качество бензинам, тогда как парафины нормального строения отрицательно влияют на поведение топлива в карбюраторных двигателях. Углеводороды парафинового ряда нормального строения являются желательными компонентами реактивного и дизельного топлив, смазочных масел, однако до определенных концентраций, при которых эти нефтепродукты удовлетворяют требованиям Государственных стандартов (ГОСТ) по низкотемпературным свойствам. [c.23]

Рис. 18. Зависимость от плотности нормальных парафиновых углеводородов Рис. 18. Зависимость от <a href="/info/136457">плотности нормальных</a> парафиновых углеводородов
    Дифференциальный метод, получивший наибольшее распространение, предусматривает дискретизацию непрерывной смеси, т. е. представление ее в виде смеси определенного числа узких фракций, каждая из которых идентифицируется как индивидуальный компонент, обычно парафиновый углеводород, по средней температуре кипения и плотности узкой фракции [15]. [c.32]


    В табл. 19 приведены вычисленные и измеренные значения молекулярной рефракции для нескольких углеводородов. Следует отметить, что парафиновые изомеры, плотность которых выше или ниже плотности нормальных соединений, отличаются от них также и по молекулярной рефракции. [c.260]

    Теплоемкость жидких углеводородов и моторных топлив при температуре 0 С колеблется в пределах от 0,60 до 0,35 ккал кг град). Парафиновые углеводороды имеют более высокие значения теплоемкостей, чем ароматические и нафтеновые. Углеводороды нормального строения обладают большей теплоемкостью, чем изомерные. С увеличением плотности теплоемкость топлив, как правило, уменьшается ([14].  [c.46]

    Ай и Are —разница в плотности и индекс рефракции между значениями, измеренными для образца и значениями для теоретического парафинового углеводорода неопределенного молекулярного, веса. [c.209]

    Таким образом, бензины и керосины, полученные перегонкой нефти, богатой ароматическими углеводородами, будут тяжелее, т. е. обладать большей плотностью, чем бензины и керосины из нефтей, СОСТОЯШ.ИХ в основном из парафиновых углеводородов. [c.19]

    Большое количество работ было проведено по изучению алкил-карбонатов, примененных в качестве растворителей для выделения ароматических углеводородов [41, с. 319—328 72 81—86]. Алкил-карбонаты характеризуются селективными свойствами по отношению к ароматическим углеводородам, высокой плотностью, высокой температурой кипения и низкой теплоемкостью. Исследование диаграмм равновесия этилен- и пропиленкарбонатов с парафиновыми и с ароматическими углеводородами Се — Се показало, что бинодальные кривые имеют закрытый характер. Поэтому прямой экстракцией получить экстрактную фазу, не содержащую парафиновых углеводородов, невозможно [41, с. 319—328]. Наиболее пригодным в качестве растворителя оказался пропиленкарбонат. [c.67]

    Кристаллы церезинов имеют игольчатое строение. В их состав наряду с парафиновыми углеводородами входят твердые нафтеновые ароматические углеводороды с длинными боковыми цепями. При одной и той же температуре плавления церезины характеризуются большими по сравнению с парафинами плотностью, вязкостью и молекулярным весом, что видно из приведенных ниже данных  [c.23]

    В связи с расширением областей применения парафинов, церезинов и разработкой на их основе восковых композиций большое значение приобретают физико-механические свойства этих продуктов, такие как твердость, прочность, пластичность, адгезия, усадка и др. Прочностные и пластичные свойства твердых углеводородов могут быть оценены по остаточному напряжению сдвига, температуре хрупкости и показателю пластичности. Результаты работ [16, 22] показали, что физико-механические свойства твердых углеводородов обусловлены их химическим составом, структурой молекул отдельных групп компонентов и связанной с ней плотностью упаковки кристаллов твердых углеводородов, а также фазовым состоянием вещества. Сопоставление физико-механических свойств со структурой твердых углеводородов проведено [16] на молекулярном уровне с использованием температурных зависимостей показателей преломления и ИК-спектров в области 700—1700 см-. На рис. 33 и 34 приведены результаты исследования грозненского парафина, состоящего из парафиновых углеводородов нормального строения, и углеводородов церезина 80 , не образующих комплекс с карбамидом и содержащих разветвленные и циклические структуры. [c.126]

    Плотность ароматических углеводородов, имеющих орто- и смежное положение заместителей, выше, чем у других изомеров с теми же алкильными группами. Введение заместителей в ароматическое ядро снижает температуру плавления и повышав ет температуру кипения (инкремент температуры кипения составляет 20°С на один атом углерода). Наличие нескольких заместителей повышает температуру кипения больше, чем изомерный углерод с одним заместителем (ксилолы и этилбензол, триметилбензолы и н-пропил- и изо-пропилбензолы). Для симметричных изомеров характерна более высокая температура плавления (л-ксилол плавится при 13,3°С, м- и о-ксилолы соответственно при —47,9°С и —25,2°С). Подобная же закономерность наблюдается и для трехзамещенных углеводородов. При различии в строении алкильного заместителя наблюдаются закономерности, характерные для парафиновых углеводородов — изоструктура алкильного заместителя приводит к снижению температуры кипения. Основные показатели некоторых ароматических углеводородов приведены в табл. 1.1. [c.9]

    Плотность и коэффициент объемного расширения. Плотность индивидуальных парафиновых углеводородов при температуре их плавления примерно одинаковая — от 0,777 до 0,782 [c.54]


    Q—плотность смеси нафтеновых и парафиновых углеводородов. [c.496]

    Это трудно осуществить в большинстве заводских и даже специальных лабораторий. Поэтому Р. Оболенцев и А. Бочаров [242] разработали метод так называемых оловянных точек для анализа бинарных смесей парафиновых углеводородов с близкими температурами кипения и почти совпадающими другими физическими константами (плотность, показатель преломления и т. д.). [c.499]

    Данные табл. 6 также свидетельствуют о большей степени образования кислых продуктов при окислении парафино-наф-теновых фракций. Из данных табл. 1 следует, что топливо Т-8 (образец 1) содержит значительно больше парафиновых и ароматических углеводородов, чем топливо Т-6. Это и обусловило различие в характере продуктов окисления, что подтверждается при сопоставлении данных по оптической плотности окисленных образцов 1 и 3 топлива Т-8, содержащих ароматические углеводороды (см. табл. 1, 5 и 6). Меньшее содержание последних в образце 3 топлива Т-8, чем в образце 1, обусловило меньшую степень его окраски при окислении во всем исследуемом диапазоне температур (130—160° С). Наряду с этим вследствие меньшего содержания в образце 3 парафиновых углеводородов после окисления его кислотность также ниже, чем у образца 1. [c.14]

    Для деасфальтизации могут быть использованы и более высокомолекулярные парафиновые углеводороды, например бутаны, нентаны, что возможно в условиях, когда температуры растворов масла в этих углеводородах, как и растворов в пропане, будут близки к критической температуре растворителя. Однако вследствие увеличения углеводородной цепи растворителя значительно повышается роль дисперсионных сил, и, несмотря на почти одинаковую критическую плотность н-парафинов (от Сд до С ) [26], четкость отделения асфальто-смолистых веществ от углеводородов снижается и деасфальтизат обогащается нежелательными соединениями, повышающими его коксовое число, плотность и т. д. При использовании в качестве растворителя этана роль дисперсионных сил по сравнению с пропаном резко снижается, значительно увеличивается эффект взаимного притяжения молекул смол и углеводородов, и поэтому асфальтовый слой очень обогащается углеводородами. [c.179]

    Еще в 1883 г. [58] было высказано мнение, что, в нефтяном парафине содержатся углеводороды предельного ряда нормальные и изостроения. Аналогичное мнение высказывалось в работе [59], где сравнивались температуры плавления, кипения и плотности парафиновых углеводородов, выделенных из пенсильванской нефти, и синтетических н-алканов. Более высокая плотность природных парафиновых углеводородов объяснялась [59] возможным присутствием изоалканов (указывалось, однако, на возможность присутствия углеводородов других гомологических рядов). Результаты изучения физических свойств узких фракций парафина, выделенного из нефти Мид-Континента методом дифракции рентгеновских лучей [60], позволили заключить, что н-алканов в парафине содержится не более 65 вес. %, содержание изоалканов достигает 20 вес,%. [c.38]

    Высокое содержание парафиновых углеводородов нормального строения в керосиновых фракциях усинской нефти не позволяет получить из нее топливо ТС-1 удовлетворяющее требованиям по температуре начала кристаллизации из усинской нефти может быть получена лишь фракция топлива ТС-1 с температурой начала кристаллизации —60° С, с КК не выше 223° С и пониженной, по сравнению с требованиями стандарта, плотностью (0,770 вместо требуемой не менее 0,775). При [c.50]

    Новолачные феноло-формальдегидные олигомеры предста-ляют твердые вещества от светло-коричневого до темно-коричневого цвета, плотностью 1,2—1,3 т/м . Хорошо растворимы в метаноле, этаноле и ацетоне, растворяются в фенолах и растворах щелочей. Нерастворимы в ароматических и парафиновых углеводородах и галогенпроизводных углеводородов. Не отверждаются при длительном хранении и нагревании до 180°С. [c.401]

    Первая зависимость проявляется при более низких концентрациях. Так, в гомологическом ряду парафиновых углеводородов (от пентана до гексадекана) а изменяется на — 14 дин см, а на границе с водой — всего на 3 дин см [47]. Объяснить эти данные можно с помощью двух факторов [48] 1) изменение растворимости в воде и давления насыщенного пара ряда углеводородов 2) увеличение в гомологическом ряду плотности, т. е. уменьшение межмолекулярного расстояния. [c.435]

    Нормальные парафиновые углеводороды имеют наименьшую объемную теплоту сгорания, наименьшую плотность по сравнению с другими углеводородами такого же молекулярного веса. Кроме того, они имеют высокие температуры застывания. Следует отметить, что содержание нормальных алкановых углеводородов в топливах невелико. Ниже приводятся свойства нормальных парафиновых углеводородов, выделенных из девонских кероси-нов (табл. 7). [c.16]

    Суммарное содержание нафтеновых углеводородов во фракциях нефти б0-200°С можно определить, используя разность физических констант (плотности, показателя преломления) нафтеновых и парафиновых углеводородов. [c.65]

    С повышением температуры плавления парафинов вязкость их увеличивается и при числе атомов углерода в молекуле 40 составляет около 8 мм /с при 100 С. Плотность индивидуальных парафиновых углеводородов при температуре их плавления одинакова и колеблется от 777 до 782 кг/м . [c.402]

    Объемная теплота сгорания углеводородов зависит от их массовой теплоты сгорания и плотности. Ароматические углеводороды имеют наиболее высокие значения плотности, особенно нафталиновые, их объемная теплота сгорания существенно выше, чем нафтеновых и парафиновых углеводородов. [c.50]

    Плотность реактивного топлива зависит от химического и фракционного состава. При увеличении содержания тяжелых фракций, ароматических углеводородов и уменьшении содержания парафиновых углеводородов плотность топлива повышается. Плотность товарных партий одного и того же сорта топлива может отклоняться от средней величины примерно на 15кг/м . [c.33]

    Продукт и пропеллент несовместимы. Такие системы используются обычно для распыления водных растворов. В качестве пропеллептов применяются сжиженные пропан, бутан, изобутан и другие парафиновые уг.леводороды. Водный раствор и жидкий иропеллент образуют две отдельные жидкие фазы (рис. 6), где вода образует нижний слой В, а парафиновые углеводороды (плотностью 0,5—0,6) — верхний слой Б. Пары пропеллептов образуют газовую фазу А. [c.20]

    Обобщая вышеизложенное, следует отметить, что в двух- и трех-комионентных системах хлорзамещенные углеводороды (метиленхлорид, метилхлорид, винилхлорид и др.) повышают растворимость фреонов, но в то же время, агрессивно действуют на резиновые и пластмассовые детали клапана. Парафиновые углеводороды, плотность которых ниже единицы (обычно 0,5—0,6 г/сж ), применяются главным образом в водных растворах. [c.60]

    При исследовании химического состава и структуры нефтяных парафинов и церезинов часто пользуются также расчетными методами, используя связь между их структурно-групповым составом и некоторыми физическими свойствами. Одним из таких методов является структурный анализ по Грошу — Гродде, основанный на различии физических свойств парафиновых углеводородов нормального и изостроения и нафтеновых. При этом анализе определяют молекулярную массу М, плотность при 90 °С ( 4 ), температуру плавления и показатель преломления при 90 °С (/гд ). Используя зависимости между физическими параметрами, можно найти  [c.251]

    Нафтеновые углеводороды являются важнейшей составной частью моторных топлив и смазочных масел. Автомобильным бензинам они придают высокие эксплуатационные свойства. Моноцик-ли еские нафтеновые углеводороды с длинными боковыми парафи-но выми цепями являются желательными компонентами реактивных дизельных топлив, а также смазочных масел. Являясь главной составной частью масел, они обеспечивают выполнение одного из основных требований, предъявляемых к смазочным маслам, — малое изменение вязкости с изменением температуры. При одинаковом числе углеродных атомов в молекуле нафтеновые углеводороды характеризуются большей плотностью и меньшей температурой застывания, чем парафиновые углеводороды. [c.25]

    Основное количество нефти дает Ново-Дмитриевское месторождение, которое по добыче нефти в Краснодарском крае занимает второе место после Троицко-Анастасиевского. Новодмитриевская нефть легкая (плотность 0,8271), парафинистая (парафииа 4,4%), малосернистая (серы 0,22%) с небольшой кислотностью (0,15 мг КОН на 1 г иефти). Суммарное количество асфальто-смоли-стых веществ составляет 6,06%. Содержание фракций, выкипающих до 350 °С, равно 63,1 вес. %, в том числе 34,4% до 200 °С. Нефть относится к типу парафино-нафтеновых. В ней превалируют парафиновые углеводороды (48— [c.339]

    Из этих данных видно, что наблюдается возрастание температуры застывания, плотности и т. д. при переходе от легких фракций к более тяжелым, особенно выше 400° С. Температура плавления н-парафинов при этом увеличивается от —40 до +55,5° С, Наибольшее количество парафиновых углеводородов обнаружено во фракциях, выкипаюш их в пределах 300—400° С. Оптимальными условиями депарафинизации широкой фракции (120—470° С) юймынской нефти были признаны следующие  [c.48]

    Характеристический фактор К является достаточно простым и удобным критерием оценки свойств сырья крекинга. Его применяют для классификации нефтяных фракций и нефтей по химическому составу [4]. Для парафиновых углеводородов среднее значение К составляет 13, для нафтеновых 11,5, для ароматических 10,5. Показатели каталитического крекинга заметно улучшаются при иопользованип сырья с более высокими значениями характеристического фактора. При вычислении этого фактода и ододьзуют зависим ость, связывающую его со средней усредненной температурой кипения ср.уср и относительной плотностью < 4 нефтепродукта [4, 5]  [c.12]

    Агфпльтрны — получаются после отделения от битума карбе-нов и карбоидов осаждением петролейным эфиром плотностью (при 20 °С) 0,642—0,694 г/см или индивидуальными парафиновыми углеводородами (последнее предпочтительнее). Сухие асфаль-тены представляют собой порошок от темно-коричневого до черного цвета, растворимый в бензоле, четыреххлористом углероде и сероуглероде, но нерастворимый в парафиновых углеводородах. Они высакоароматизованы и содержат конденсированные кольца. [c.7]

    ПЛОТНОСТЬ битумов при обычных температурах медленно растет во времени до какой-то постоянной величины [191, значения поверхностного натяжения для данных температур, приведенные в табл. 1.7, не соответствуют равновесным условиям. Филиппов [611 измерил поверхностное натяжение у многих битумов при равновесны.х условиях он нашел, что поверхностное натяжение и его темг1ерат рный коэффициент для разных битумов практичрски одинаковы, а полная поверхностная энергия их такая же, как и у парафиновых углеводородов. Из этого следует, что в условиях равновесия на поверхности преобладают СНз-группы. [c.59]

    Для определения влияния изменения межмолекулярного расстояния на поверхностное натяжение, рассмотрены [48] изомеры октана, имеюш,ие одинаковое давление насыш,енного пара, но разные плотности и поверхностные натяжения. Таким путем найдена зависи-мость поверхностного натяженпя от плотности фазы, с помош ью которой получена [48] величина изменения поверхностного натяжения в гомологическом ряду парафиновых углеводородов от пентана до тетрадекана — оказавшаяся равной 3,5 дин1см. Это значение практически совпадает с общим изменением межфазного натяжения в том же ряду в системе углеводород — вода (3,2 дин1см). Объяснение состоит в том, что растворенные в воде молекулы углеводородов практически не влияют на межфазное натяжение, так что изменение а вызвано разницей плотностей различных гомологов. В системе жидкость — газ остальное изменение о (14—3,5) происходит за счет давления насыщенного пара. [c.436]


Смотреть страницы где упоминается термин Парафиновые углеводороды плотность: [c.22]    [c.42]    [c.43]    [c.267]    [c.21]    [c.65]    [c.35]    [c.36]    [c.148]    [c.133]    [c.403]    [c.178]    [c.15]   
Технология переработки нефти и газа (1966) -- [ c.19 ]




ПОИСК





Смотрите так же термины и статьи:

Парафиновые углеводороды

Углеводороды плотность



© 2025 chem21.info Реклама на сайте