Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плотность дискретной фазы

    В первой части программы по заданным температуре и давлению на входе в колонну определяют долю отгона сырья, составы паровой и жидкой фаз и их энтальпии. Состав сырья, заданный кривой ИТК, вводят в машину в виде координат дискретных точек. Аналогичным образом вводят кривые зависимости средних молекулярных масс и плотностей компонентов от их температур кипения. Задание на дискретизацию записывают в виде таблицы температурных границ условных компонентов (ее готовят вручную или вводят в качестве готового массива). Истинные дискретные компоненты на кривой ИТК изображаются ступенями, при этом для представления каждого компонента требуются две координаты. В порядке подготовки данных для расчета массовые концентрации и массовый расход сырья переводят в мольные величины. [c.89]


    Плотность дискретной фазы составляет и в начале псевдоожижеиия плотность непрерывной фазы равна ,,(1—ео) -Ь + р/ о]. Подставляя эти значения плотностей в уравнение (2.10) и придавая ему форму уравнения (2,19), получим [c.54]

    Если плотность сплощной фазы р меньше, чем плотность дискретной фазы рд (т. е. частица тяжелая и р<1), то частица будет двигаться в направлении действия массовой силы и векторы скорости частицы и и напряжения массовой силы а будут направлены в одну сторону. Внешняя сила, вызывающая движение жидкой частицы, [c.89]

    Было предпринято много попыток разработать такую теорию двойного электрического слоя, которая бы количественно согласовалась с опытными данными. Так, Райс (1926—1928) высказал предположение, что и внутри металла не все заряды локализованы в одной плоскости, а распределяются в объеме металла с постепенно убывающей плотностью. Представление о двух диффузных слоях по обе стороны границы раздела вряд ли приложимо к тому случаю, когда одна из граничащих фаз является металлом. Возможно, что она реализуется на границе ионнопроводящих фаз, а также на границе полупроводника с раствором. Есин и Шихов (1943) усовершенствовали теорию Штерна, учтя дискретный характер ионных слоев. Они предположили, что специфически адсорбирующиеся ионы будут присутствовать в двойном слое в виде взаимно связанных ионных пар анион — катион. Эта идея была развита Эршлером (1946), который считает наиболее вероятным гексагональное расположение адсорбированных ионов, связанных со стороны раствора с деформированной ионной атмосферой. Модель Эршлера позволяет количественно истолковать влияние поверхностноактивных ионов на сдвиг максимума электрокапиллярной кривой. [c.276]

    Гидроциклоны, предназначенные для разделения двухфазной системы твердое тело — жидкость с плотностью дискретной фазы Рд большей, чем плотность сплошной фазы р, получили широкое распространение для выделения из жидкостей различных твердых частиц. Большое число известных конструкций гидроциклонов предназначено для разделения именно таких двухфазных жидкостей. [c.96]

    Средний размер пузырей быстро увеличивается по высоте слоя, главным образом в результате их коалесценции, а также за счет расширения газа вследствие уменьшения давления с высотой. Однако последний эффект невелик, за исключением зернистых материалов с очень высокой плотностью или систем с очень низким абсолютным давлением над слоем. Если иметь в виду эффект расширения, то объемный расход дискретной фазы остается постоянным по высоте слоя, кроме некоторых отдельных случаев, которые в данной главе не рассматриваются (см. главу II). [c.137]


    Визуальные наблюдения и количественные измерения локальных параметров показывают, что кипящий слой взвешенных твердых частиц непрерывно пульсирует он неоднороден в пространстве и нестационарен во времени [1, гл. IV]. Можно выделить несколько типов масштабов этой неоднородности. Минимальный масштаб, связанный с дискретностью самой системы, состоящей из отдельных зерен, — тривиален внутри зерен объемная плотность твердой фазы а = 1 — е равна единице, а в промежутках между зернами а = 0. Элементарные статистические соображения [2 ] показывают, что влияние этой дискретности сглаживается при выборе достаточно большого представительного объема, содержащего не менее 500—1000 частиц. Определенная таким масштабом локальная порозность е не остается постоянной из-за непрерывного движения частиц, входящих и выходящих за пределы представительного объема и меняющих взаимную конфигурацию. Наконец, возможны и крупномасштабные колебания слоя в целом, определяемые размерами и геометрией всего аппарата. Непрерывные случайные внешние возмущения от вры- вающихся через газораспределительную решетку газовых струй ( белый шум ) особенно воздействуют на характерные резонансные частоты колебаний всего слоя. [c.47]

    В общем случае для промышленных аппаратов в качестве модели гидродинамики кипящего слоя может быть принят неоднородный фонтанирующий слой или слой с каналообразованием, у которого кроме дискретной и непрерывной фаз, есть зона с внутренней циркуляцией, которая по отношению к протекающим через слой дискретной и непрерывной фазам является застойной . Существенной особенностью фонтанирующего псевдоожиженного слоя или слоя с каналообразованием является то, что по осям струй или внутри каналов вследствие высокой абсолютной скорости псевдоожижающего агента и малой плотности твердой фазы достигается высокий обмен между потоками, протекающими в дискретной и непрерывной фазах, в связи с чем скорость химического взаимодействия в основном лимитируется процессами, протекающими в застойной зоне . [c.77]

    Механизм разделения двухфазной жидкости состоит в том, что твердые частицы под действием центробежной силы перемещаются к стенкам гидроциклона и по винтовой траектории перемещаются вниз к нижнему выпускному отверстию, через которое они выводятся из гидроциклона вместе с небольшим количеством жидкости. Осветленная жидкость удаляется из гидроциклона через сливной патрубок, расположенный в его верхней крышке. Когда плотность твердой дискретной фазы меньше, чем плотность сплошной фазы, твердые частицы концентрируются в области, примыкающей к вертикальной оси гидроциклона. Поднимаясь вместе с внутренним круговым потоком вверх, твердые частицы выводятся из гидроциклона вместе с каким-то количеством жидкости через верхний патрубок, а осветленная вода уходит из аппарата через нижнее отверстие. [c.96]

    Понятно, что подвижность влаги в водонасыщенных торфяных системах в первую очередь определяется их структурой, а также электрокинетическими явлениями на границе раздела фаз. Ионогенные функциональные группы торфа, главным образом карбоксильные, диссоциируют в полярной дисперсионной среде (воде) с отщеплением катиона, вследствие чего частицы торфа приобретают отрицательный заряд [221]. Заряд частиц формируется из дискретных элементарных зарядов как вне, так и внутри надмолекулярных ассоциатов торфа [214, 222]. Диффузия полярных молекул внутрь частиц торфа вызывает увеличение диэлектрической проницаемости всего ассоциата, степени диссоциации функциональных групп [223]. В свою очередь, рост плотности заряда структурных единиц торфа интенсифицирует связь воды с торфом по механизму ион-дипольного взаимодействия между ионизованными функциональными группами торфа и молекулами воды. В результате содержание связанной воды в материале увеличивается. Особенно четко это проявляется при повышении pH торфяных систем (см. табл. 4.1) [224]. [c.69]

    Необходимым условием развития межкристаллитной коррозии является такое расположение частиц фаз выделения и зон обеднения или обогащения, когда они замыкаются между собой, обволакивая зерно и пронизывая такими прослойками металл. При этом достаточно или непосредственного замыкания частиц или зон между собой, или частиц через зоны. В случае дискретности расположения их коррозия будет носить спорадический характер и переходить из межкристаллитной в равномерную. Разумеется, что коррозия будет протекать только при наличии разницы электрохимических потенциалов структурных фаз или участков металла, образующих гальванический микроэлемент. Чем больше разница эффективных площадей возникающих электродов, тем выше плотность коррозионного тока в меньшем из них и активнее его разрушение. [c.138]

    Процесс обогащения полезных ископаемых на винтовых аппаратах представляет систему взаимосвязанных явлений, протекающих в криволинейном потоке пульпы. Этот поток можно рассматривать как сложное трехмерное движение двух дискретных потоков несущей жидкости (воды) и твердой фазы (руды). В потоке пульпы происходят разрыхление твердой фазы, ее расслоение, перераспределение по ширине желоба на фракции, отличающиеся по физическим свойствам (плотности, крупности). Поэтому при изложении основных закономерностей процесса рассматриваются характер и особенности движения отдельных фаз по винтовой поверхности, роль и влияние потока воды и взаимодействие между потоком и твердой фазой. Дается качественная оценка характера группового и слоевого движения зерен и объясняются основные физические явления, имеющие место в процессе концентрации на винтовой поверхности. [c.5]


    Примером использования гидроциклонов для разделения системы жидкость — жидкость в случае, когда плотность дискретной фазы больще плотности сплощной фазы, являются работы Ю. Н. Болдырева по изучению возможности отделения воды из нефтепродукта. Отделение воды проводили в конических гидроциклонах с углом конуса от 3 до 10° и внутренним диаметром оснований каждая от 26,3 до 55,1 мм. В результате проведенных экспериментов установлена возможность применения гидроцик-лона для отделения воды из масла и топлива, причем эффективность отделения возрастает при многократной очистке в гидроциклоне. В работе получены зависимости эффективности отделения воды из масла и топлива от давления на входе в гидроциклон. Из анализа этих зависимостей следует, что повышение давления на входе не всегда приводит к росту эффективности отделения. Минимальной эффективности соответствует минимальное давление на входе. Этот факт, по-видимому, подтверждает вывод М. Бонет о том, что решающее значение имеет скорость на входе в гидро- циклон, определяющая критерий для сил сдвига Ка. С повышением давления на входе возрастает скорость на входе и Ка приобретает значения выше критического, что приводит к эмульгированию дискретной фазы. [c.98]

    Перспективная область применения гидроциклонов — использование их для выделения нефти из нефтесодержащих сточных вод, В этом случае приходится иметь дело с системой жидкость — жидкость, у которой плотность дискретной фазы меньше, чем у сплощной. В производственных условиях были проведены исследования гидроциклонов в НГДУ Альметьевскнефть . При этом использовали гидроциклоны следующих размеров  [c.99]

    Модель потока дрейфа для течений с преобладающим влиянием сил тяжести без учета напряжения трения на стенке. Обычно считается, что цель этого метода — расчет средней объемной концентрации дискретной фазы при двухфазном течении в канале, когда известны объемные расходы Уа и соответственно дискретной и непрерывной фаз. Метод обычно применяли к вертикальным потокам, в которых его главные допущения (постоянство скоростей и концентраций фаз поперек канала) ближе всего к действительности. Влияния касательных напряжений у стенки не учитываются, н, следовательно, метод непригоден для расчета потерь давления, вызываемых трением. Самое подробное описание этого метода дано в книге [7]. Следуя ей, допустим, что скорости и плотности потоков положительны в направлении движения элемента дискретной фазы, находящегося под действием силы тяжести в статическом объеме непрерывной фазы. В этом случае скорости, направленные, например, вверх, рассматриваются как положительные для пузырькового режима течения газожидкостного потока, а скорости, направленные вниз, считаются положительными для суспензии тяжелых твердых частиц в более легкой жидкости. Это правило позволяет представлять все соответственные системы (пузырьковые газожидкостные потоки, капельные жидко-жидкостиые потоки, суспензии твердых частиц в газе, суспензии твердых частиц в жидкости, дисперсные газожидкостные потоки) обычным образом. [c.180]

    Одно из принципиальных отличий потоков газовзвеси от жидкостных суспензий заключается в существенном различии плотностей дискретной и сплошной фаз. Именно поэтому для газовзвеси можно пренебречь силой Бассэ и линеаризировать дифференциальное уравнение пульсационного движения частицы при любом законе обтекания. [c.8]

    Растворитель нельзя рассматривать как макроскопическую непрерывную фазу, которая характеризуется только физическими свойствами, например плотностью, диэлектрической проницаемостью, показателем преломления и т. п. напротив, растворитель следует считать дискретной фазой, состоящей из множества индивидуальных, взаимодействующих друг с другом молекул. Степень этого взаимодействия может меняться в широких пределах для одних растворителей (например, воды) характерна очень глубокая внутренняя структура, а для других (например, углеводородов)—незначительные межмолекулярные взаимодействия. Взаимодействия между молекулами в растворителях (и в растворах), с одной стороны, слишком сильны, чтобы их можно было оценить только с помощью законов кинетической теории газов, а с другой — слишком слабы, чтобы к ним можно было бы применить теорию физики твердого тела. Таким образом, растворитель — это не та инертная среда, в которой диффундирующие растворенные вещества диффундируют и распределяются равномерно и беспорядочно, но в то же время и не высокоупорядоченная структура типа кристаллической решетки. Тем не менее упорядоченность удаленных элементов структуры в кристалле отчасти напоминает локальную упоря- [c.24]

    Фазовый угол зависит от точки, в которой выбирается начало элементарной ячейки. Но если даже выбор начала произведен, угол для любого взятого отражения а priori может принимать значение от 0° до 360° поэтому, при суммировании большого числа членов в уравнении (1), математически воз можно бесконечное число решений для р(х, у, z). Для специального случая центросимметричной структуры (при условии выбора начала в центре симметрии) может принимать значение 0° или 180°, т. е. структурная амплитуда, взятая с положительным или отрицательным знаком, становится равной структурному фактору. Тем не менее, хотя число решецрй (1) в этом случае уже не является бесконечным, оно все еще остается очень большим (2 для N измеренных отражений) поэтому проба всех возможных комбинаций знаков даже для небольшого числа сильнейших отражений совершенно неприменима на практике. Большинство из этих знаковых комбинаций приводит к физически неприемлемым результатам электронная плотность никогда не должна быть отрицательной, ее распределение должно соответствовать дискретным атомам, число, характер и расположение которых обязаны отвечать разумной химической формуле. Проблема заключается в нахождении группы знаков (или фаз), которая приводит к правильной и, по-видимому, единственно возможной структуре. В настоящее время нет единственно признанного общего метода для решения фазовой проблемы, хотя считается, что такой метод может существовать во всяком случае для центросимметричных кристаллов. Расшифровка многих сотен исследованных до сих пор структур проводилась методами ограниченной применимости, так что фазовая проблема решалась косвенным образом. Первым из таких методов является метод проб и ошибок. Если структура известна, то всегда можно рассчитать структурный фактор (включая фазовый угол). Поэтому в достаточно простых случаях можно попытаться испробовать несколько атомных расположений до [c.60]

    Более сложным является выбор рабочей скорости при противоточном движении фаз для систем с близкими о мными расходами — это обьино системы Ж — Ж и Ж — Т. База расчета для них та же — скорость стесненного витания И с- Но для систем с близкими плотностями фаз величина очень чувствительна к объемной концентрации дискретной фазы в сплошной среде и потому должна определяться (и выдерживаться в ходе процесса) весьма тщательно. [c.815]

    Было показано [127], что эти требования несовместимы либо расход газа в дискретной фазе не отвечает соотношению —-пУд), либо не по всему объему непрерывной фазы скорость и порозность равны соответственно и е . Таким образом, двухфазная теория не дает исчерпываюн его представления о механизме образования и движения газовых пузырей в псевдоожиженном слое. До настоящего времени не предложено и другой достаточно четкой и стройной теории процесса. Установленным можно считать лишь тот факт, что однородность слоя увеличивается по мере уменьшения отношения (а по мнению некоторых исследователей — разности) плотностей твердого материала и ожижающего агента. [c.28]

    Таким образом, неоднородная псевдоожиженная система состоит как бы из трех фаз дискретной непрерывной с характерной иорозностью е зон уплотнения с иорозностью, близкой к порозности неподвижного слоя Ец (в реальных системах, естественно, не существует резкой границы между расширившимися и уплотненными зонами непрерывной фазы). Заметим, что существование зон с различной плотностью непрерывной фазы свидетельствует о неправильности ряда соотношений, следующих из двухфазной теории 16] и базирующихся на представлениях о неизменной плотности непрерывной фазы в объеме слоя. В частности, можно указать на формулы для расчета интенсивности обмена ожижающим агентом между непрерывной и дискретной фазами. [c.32]

    В рамках молекулярно-кинетического подхода понятия поверхности конденсированных фаз и границы раздела между ними наполнены реальным содержанием. Подход Гиббса, рассмотренный в разд. 2.1.1, базируется на формальных соображениях. Уже Ван-дер-Ваальс считал, что даже в простейшей системе жидкость-газ межфазная поверхность представляет собой слой конечной толщины, плотность которого уменьщаетсй по мере приближения к геометрической границе раздела фаз от р, до р . Строго говоря, такое заключение справедливо только для области температур, близких к критическим, однако оно вытекает и из решеточной модели жидкости. Анализ молекулярных функций распределения показывает, что изменение плотности конденсированной фазы в переходном слое имеет ступенчатый осциллирующий характер с постепенным затуханием осцилляций при переходе к жидкой фазе с периодом, близким к среднему межмолекулярному расстоянию. Подобная дискретность подтверждается результатами оптических измерений. Отраженный свет плоско поляризован лишь при скачкообразном изменении показателя преломления от 1 до п. При плавном изменении плотности луч эллиптически поляризован. Подобные эффекты связаны с влиянием толщины реальных зон между контактирующими фазами. В общем случае эта величина имеет, очевидно, конечные значения, увеличивающиеся с ростом температуры вплоть до бесконечности в критической точке. [c.89]

    Если эти уравнения применить к растворам коллоидного кремнезема, то видно, что объем дисперсной фазы может быть рассчитан по ВЯЗКОСТИ- В случае дискретных сферических частиц этот объем будет включать не только объем частиц 5102, но также и объем связанной воды в силанольном слое на поверхности частиц, а также и некоторый объем воды, связанный с гидратацией противоположно заряженных ионов. Если вязкость измеряется при pH около 1,5, то не имеется противоположно заряженных катионов, так как заряд частиц очень мал. При более высоком pH частицы заряжены и вязкость должна быть измерена при определенном pH, чтобы достигнуть постоянного электровязкостного эффекта, который зависит от количества воды, связанной с противоположно заряженными ионами. Однако степень агрегации первичных частиц является более важной переменной, чем электровязкостный эффект , так как объем дисперсной фазы сильно зависит от степени агрегации первичных частиц. Нужно отметить, что Симха [47] также вывел другое уравнение, описывающее зависимость между вязкостью и концентрацией, подобное уравнению Монея. Зависимость между долей объема, занимаемой 5102 в золе, и весовой концентрацией БЮг может быть легко рассчитана, если принять, что плотность аморфного кремнезема равна 2,20 [48]. [c.99]

    Влияние твердой поверхности на переходные слои полимеров проявляется, согласно Малинскому [399], в двух взаимосвязанных аспектах-пространственном и энергетическом. Геометрически субстрат ограничивает контактирующие с ним объекты на трех уровнях их структурной организации - сегментальном, макромолекулярном и надмолекулярном. В энергетическом плане роль субстрата сводится к изменению характера внутрифаз-ного взаимодействия как функции расстояния от поверхности. Вследствие этого подвижность структурных элементов в переходных слоях заметно снижается по сравнению с объемом фазы и изменение их свойств происходит не дискретно по мере удаления от геометрической границы раздела фаз, а непрерывно. Кроме того, из-за агрегативного характера адсорбции на поверхность адсорбента из раствора переходят, как правило, не изолированные макромолекулы, а их агрегаты, причем для многокомпонентных систем может наблюдаться селективная адсорбция. Тогда профиль изменения плотности звеньев в адсорбированном плоском слое ниже 0-точки должен, согласно подходу де Женна, включать три участка. На первом из них наблюдается быстрый спад плотности вблизи геометрической границы раздела, когда [c.91]


Смотреть страницы где упоминается термин Плотность дискретной фазы: [c.16]    [c.89]    [c.181]    [c.96]    [c.97]    [c.133]    [c.428]    [c.249]    [c.428]    [c.49]    [c.95]    [c.224]    [c.360]   
Псевдоожижение твёрдых частиц (1965) -- [ c.16 , c.104 ]




ПОИСК





Смотрите так же термины и статьи:

Дискретность



© 2024 chem21.info Реклама на сайте