Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глина первичные глины

    Распространение в природе. Важнейшей и почти единственной оловянной рудой является оловянный камень (касситерит) SnO 2. В первичных месторождениях этот минерал встречается включенным в другие породы, прежде всего в гранит ( горное олово ), а во вторичных месторождениях он существует ( оловянное мыло ) в виде мелких зернышек, которые тесно перемешаны с песком или глиной, причем содержание олова в рудах, имеющих значение для получения металла, часто очень невелико, в то время как чистая двуокись содержит 78,62% олова. [c.570]


    Теоретические обсуждения последних нескольких лет указывают на то, что первичная атмосфера, обычно называемая ме-тан-аммиачной, должна была состоять фактически из метана и азота со следами аммиака. Эта точка зрения подтверждается хорошей растворимостью аммиака в воде, что могло бы привести к образованию иона аммония (ЫН 4), если бы интенсивность перемешивания океанов и осадков была достаточной для сохранения значений pH в пределах 8 и для протекания реакций обмена между этими ионами и ионами калия из глины  [c.35]

    Рост величины бентонита в дистиллированной воде (табл. 44) можно объяснить следующим образом. При контакте бентонита с водой происходит связывание воды поверхностью агрегатов и первичных глинистых частиц. Это приводит к самопроизвольному диспергированию глинистых частиц. Проникновение воды к внутренним поверхностям частиц постепенно затрудняется образующимся слоем твердой адсорбированной воды. В набухшей при атмосферном давлении пробе глины остаются неполностью гидратированные участки, находящиеся под слоем твердой воды внутри первичных частиц. [c.74]

    В процессе постепенного выветривания и разрушения поверхностных пород под действием различных атмосферных факторов (влага атмосферы, действие солнечной радиации, углекислоты воздуха, подземных и наземных вод) из первичных силикатных пород образуются вторичные силикаты и алюмосиликаты типа глин (каолина) и талька. [c.101]

    ПЕПТИЗАЦИЯ — расщепление агрегатов частиц в коллоидных осадках, гелях или суспензиях на первичные частицы под действием воды или других веществ — пептизаторов. П.— один из методов получения коллоидных растворов применяется в технике при получении высокодисперсных суспензий глин и других материалов. [c.188]

    Наиболее важным и своеобразным является адсорбционное понижение прочности твердых тел, т. е. облегчение их диспергирования под действием внешних сил влиянием адсорбирующихся веществ. При этом новые поверхности развиваются иа основе разных поверхностных дефектов — изъянов структуры, развитие поверхностей облегчается адсорбцией. Предельным случаем является адсорбционное самопроизвольное диспергирование вследствие понижения поверхностной энергии до очень малых значений под влиянием поверхностно-активной среды. Именно такова природа самопроизвольного эмульгирования под влиянием больших добавок поверхностно-активных веществ и распускания (коллоидного растворения) бентонитовых глин в воде. Пептизация является диспергированием коагуляционных агрегатов, которые слабо связаны силами Ван дер-Ваальса и поэтому легко распадаются на отдельные первичные частички под влиянием адсорбции. [c.67]


    Муллит, полученный при обжиге глин и каолинов, называют первичным, а синтезированный по реакции [c.143]

    Первичными алюминийсодержащими минералами, выветривание которых приводит к возникновению глин, являются различного состава алюмосиликаты полевые шпаты (цеолиты), слюды и т. д. Они широко распространены, и не будет преувеличением сказать, что именно алюмосиликаты в основном слагают земную кору. Однако из-за сложности переработки шпатов на А1 они обычно не рассматриваются как сырье для производства алюминия. [c.52]

    В недрах Земли н на ее поверхности постоянно происходит разрушение горных пород, включающих первичные минералы, образовавшиеся при застывании земной коры. Разрушающее действие оказывают высокая и низкая температуры, резкое колебание температур, вода, СОг и О2 атмосферы. Однако возникающие при этом вторичные минералы и осадочные породы, например глины, известняки, составляют только 5% всей массы земной коры. Остальные минералы — это глубинные первичные минералы и горные породы, состоящие также из первичных минералов. [c.235]

    В суспензии палыгорскит-монтмориллонитовой глины при озвучивании начальное разрушение первичных агрегатов и перераспределение гидратных оболочек сопровождается одновременным диспергированием частичек монтмориллонита и палыгорскита с частичным переходом последнего в монтмориллонит (рис. 10). Предельного разрушения кристалликов минералов с освобождением значительной величины энергии связи система достигает к седьмой минуте. В этот момент происходит резкий качественный скачок. Начинается лавинное образование весьма прочной коагуляционной структуры со значительно более высокими структурно-механическими характеристиками. Совершенно жидкая 10%-ная суспензия приобретает сметанообразную консистенцию. [c.29]

    Анализируя данные, видим, что введение в дисперсии вяжущих тонко размолотой глины способствует очень быстрому становлению пространственной коагуляционной структуры из гидратированных исходных зерен вяжущего и частичек глинистого минерала. Эта первичная коагуляционная структура отличается при всех температурах повышенной прочностью, что свидетельствует, о большой энергетической активности поверхности вяжущего в присутствии глины. [c.147]

    Эти представления об изменении дисперсной структуры пеко-сажевой смеси в значительной степени подтверждаются результатами микроскопических наблюдений. Кроме того, подобная зависимость предельного напряжения сдвига от степени слипания первичных частиц экспериментально установлена для смесей глины с водой. [c.150]

    В результате гидролиза жиров, оставшихся в сапропелитовых отложениях, образуются жирные кислоты, глицерин и другие продукты, которые под влиянием микроорганизмов в анаэробных условиях превращаются в углеводороды (метановые, нафтеновые, ароматические) и кислородсодержащие соединения (кетоны). Все эти соединения, растворяясь в массе жирных кислот, образуют гомогенную смолоподобную массу, которая вместе с минеральными веществами (песок, глина) остается на дне бассейна, покрываясь минеральными отложениями. Такая смолообразная масса может быть названа первичной нефтью. В процессе превращения в нефть органического материала в восстановительной среде происходят химические процессы, приводящие к увеличению содержания углерода и водорода и уменьшению содержания кислорода. [c.15]

    Глины, образовавшиеся в месте залегания материнских пород, называются первичными. Вторичные глины образуются из первичных, которые уносятся вниз по течению ручья или реки и осаждаются в пресной или соленой (морской) воде. Их последующее погребение и трансформация в процессе диагенеза рассматриваются в главе 8. [c.145]

    Можно ожидать, что ионы алюминия кристаллитов глины с размерами частиц меньше микрона фиксируют на своих поверхностях ионы гидроксила, очень сложные гидратированные анионы кремнекислоты, красители, гумусовые вещества и т. д. Этот комплекс (частица размером меньше микрона 4- кремнекислота) имеет отрицательный электростатический заряд, что видно из катафореза частиц в электрическом поле (см. А. III, 58 и ниже). Гидратированные катионы калия, натрия или кальция адсорбируются при вторичных процессах на этих отрицательно заряженных продуктах адсорбции. Первичный адсорбат,окружен роем катионов, определяемым динамическим равновесием. Катионы притягиваются тем более плотно и в течение тем более длительного среднего времени, чем меньше они гидратиро- [c.321]

    Для ответа на вопрос, обусловлены ли изменения Ве в толще льда климатическими изменениями или скоростью формирования радиоизотопов, его распределение в гренландском керне сравнивалось с данными по S 1 С, полученными измерениями по древесным кольцам (Веег et al., 1988). Установлено, что около 1800 г. атмосферное содержание S было около 0%о. Как известно, формирование изотопов Ве и в атмосфере под воздействием космических лучей определяется энергетическим спектром первичных частиц. Следовательно, изменение активности космических лучей из-за солнечной и геомагнитной составляющих служит причиной колебаний скорости формирования радиоактивных изотопов в верхних слоях атмосферы. Если наблюдаемые изменения концентрации Ве происходят из-за изменений скорости продуцирования изотопов, то сходные вариации можно обнаружить и в распределении 5 С. Если же изменения концентрации Ве обусловлены климатическими изменениями, то обе кривые не будут параллельны. 1 Ве выпадает из атмосферы в течение 1-2 лет после формирования и, таким образом, скорость образования этого изотопа сразу же отражается в ледяной толще. Напротив, современный С, содержавшийся в молекулах СО2, сначала растворяется в атмосферном углекислом газе и лишь со временем поступает в океан и в атмосферу. Следовательно, атмосферная концентрация i в существенной мере отражает высокочастотные колебания скорости его формирования. С другой стороны, это сохраняет память об изменениях скорости формирования 1 С. Таким образом, для С колебаний глобальный обмен углерода действует как медленный фильтр. Сравнение кривых распределения 1°Ве и 1 С подтверждает, что скорость формирования этих радиоактивных изотопов была выше на 20% в течение последних 10-15 тыс. лет позднего плейстоцена, приводя соответственно, к повышению С концентраций во всех углеродных резервуарах (в атмосфере S С достигала 140%о). Таким образом, позднеплейстоценовые данные по распределению Ве существенны для интерпретации долговременных трендов концентрации i . К сожалению, 1 Ве сигнал в это время был почти полностью замаскирован климатическими эффектами. Однако имеются датировки по ленточным глинам, подтверждающие повышенную концентрацию С в атмосфере в конце позднего плейстоцена. Хорошая корреляция между содержанием Ве в полярном льду и 1 С в древесных кольцах за последние 5 тыс. лет указывает на то, что их кратковременные флуктуации обусловлены модуляцией галактических [c.582]


    И пироксены — входят в материнские почвообразующие породы, возникшие в результате выветривания и разрушения горных пород, иа которых слагается оболочка земной коры. В почвах эти минералы присутствуют главным образом в виде частиц песка (от 0,05 до 1 мм) и пыли (от 0,001 до 0,05 мм) и в незначительном количестве в виде илистых (меньше 0,001 мм) и коллоидных (меньше 0,25 микрона) частиц. Из первичных минералов при их разрушении под влиянием химических процессов (гидратация, гидролиз, окисление) и жизнедеятельности различных организмов в почве образуются гидраты полуторных окислвв, гидраты кремнезема, различные соли, а также вторичные минералы, так называемые минералы глин — каолинит, монтмориллонит, гидрослюды и др. Вторичные минералы находятся в почве преимущественно в виде илистых и коллоидных частиц и редко в виде пылеватых частиц. По химическому составу минералы подразделяют на Кремнекислородные соединения, или силикаты, и алюмокремнекислородные соединения, или алюмосиликаты. [c.94]

    Объяснить все вышеизложенное с точки зрения первичного залегания нефти не представляется возможным. В то же самое время с точки зр ения возможности фильтрации или продвижения нефти снизу вверх через все пласты — все это и очевидно, и объяснимо так как здесь мы видим повторение всех тех явлений, какие наблюдал Д. Дэй в U-образной трубке с флоридином. Опыты Дэя вызвали, однако, ряд возражений. Указывалось, что для своих опытов Дэй пользовался измельченным и ранее высушенным флоридином, тогда как в природе мы имеем глины, содержащие влагу, в которых поры между частицами глины заполнены водой, поэтому возникают сомнения в возможности прохождения нефти через такие влажные глины, которые должны быть абсолютно непрони- [c.195]

    Образование нефти совершалось во всех точках органогенного слоя, где был соответствующий материал, следовательно, нефть в этом пласте все время находилась в диффузно рассеянном состоянии. По мере того как образовавшаяся нефть выжималась в пористые породы, органогенный пласт или первично-битуминозная порода постепенно беднели органическим веществом, и к концу процесса приобрели приблизительно тот характер слабо битуминозных пород, которые мы наблюдаем теперь в глинах майкоп-, ской свиты, темно-серых глинах диатомовой свиты Бакинского района и т. п. Выжатая в рыхлую породу вместе с водою нефть первоначально образовывала с нею нераздельную смесь, и потом, вследствие разницы в удельном весе, началось разделение этих жидкостей причем, как мы уже указывали в. главе VI, в кровле песчаного пласта расположился слой нефти с газом, а нижнюю часть заняла вода. По мере того как твердела порода и становилась все более стойкой по отношению к действующим на нее силам сжатия, в процессе вытеснения нефти из глины в пески и вообще в рыхлые породы приняла участие скопившаяся в рыхлом пласте вода, которая, в, силу большой величины поверхностного натяжения по сравнению с нефтью, постепенно вытеснила ее из всех мельчайших пор. По мере нарастания мощности осадков, по мере погружения первично-битуминозной породы в более глубокие зоны земной коры приобретали в процессе нефтеобразования возрастающее значение процессы гидрогенизации, которые все более и более улучшали качество нефти. Чем глубже песок, тем лучше нефть (the deeper the sand, the better the oil), говорят американцы и не безосновательно. Конечно, условия нефтеобразования столь сложны, что эта поговорка может быть оправдана не в деталях, а только в весьма общем виде. В Калифорнии, нанример, глубокие пески содержат нефть в 28—35° Вё,- тогда как более мелкие продуктивные горизонты в тех же самых месторождениях дают нефть в 18—20° Вё. Точно так же в штате Оклахома наиболее глубокий горизонт, зале- [c.345]

    Так произошла нефть почти всех нефтяных месторождений Соединенных Штатов, так произошла нефть и наших нефтяных месторождений Грозненского, Майкопского, Эмбенского районов и др., где нефть, как говорят, залегает первично, т. е. она возникла в пределах той свиты, где сейчас залегает, и вся ее миграция совершалась в пределах только этой сьитьт из глин в пески и по пескам — в своды антиклиналей и в другие места скопления. Но там, где она залегает вторично, не в тех свитах, среди которых возникла и куда пришла после сложного пути странствования, там процессы ее образования несколько неясны. Возьмем нефтяные месторождения юго-восточной части Кавказа, где залежи нефти приурочены к продуктивной толще. Эта свита по своему характеру и по условиям отложения не могла сама по себе быть источником нефти, а могла послужить лишь великолепным коллекторол для нее . Нефть в нее пришла из других свит, но из каких именно Вот тут-то и начинается область догадок. Все свиты третичного возраста типа диатомовых слоев, майкопской свиты, бурого коуна могли быть материнскими породами. Битуминозные породы залегают и в мезозое. Кроме того, мы здесь видим тесную связь не только территориальную, но и генетическую, между грязевыми вулканами и нефтяными месторождениями. [c.347]

    В указанных условиях алкилирование ароматических углеводородов может быть осуществлено ие олефинами, а парафина. ги, способными дегидрироваться или расщепляться до олефинов. Согласно [511, бензол при температуре 477 °С и продолжительности контакта с активированной глиной 90 мин алкилировался пентаном с выходом алкилароматических углеводородов до 40 %, считая на взятый пентан. Увеличение времени контакта ведет к накоплению низкомолекулярных алкилароматических углеводородов, т. е. углубляет процесс крекинга боковых цепей первично образо авпшхся высокомолекулярных алкилароматических углеводородов. [c.50]

    А. В. Фрост [56] исследовал действие активированной глины на нормальный первичный октплогк.гй спирт и циклогексатгон и показал, что в интервале 150—210 С активирован]шя глина дегидратирует октанон и циклогекса-нон, причем дегидратация сопровождается гидрогенизацией получающихся непредельных углеводородов в парафины и нафтены за счет появления бедных водородом тяжельх продуктов уплотнения. [c.51]

    Кроме рассмотренных механизмов существуют другие пути и факторы, способствующие процессу первичной миграции цементация и уплотнение пород, перекристаллизация карбонатного материала, диффузия, капиллярные силы и силы поверхностного натяжения, сейсмические явления, гидрослюдизация глин и др. [c.35]

    Размер элементарных частиц каолинита гораздо больше. В элементарной глинистой час-рице атомы связаны между собой химическими связями. Элементарные частицы под влиянием молекулярных сил сцепления соедрщяются друг с другом, образуя первичные глинистые частицы. Последние с помощью различных природных цементов образуют агрегаты, которые и преобладают в сухих природных глинах. Степень дисперсности глин в значительной мере зависит от их химического и минералогического состава. Так, наибольшей степенью дисперсности обладают бентонитовые глины, удельная поверхность которых составляет 400—900 м /г, в то время как для каолинитовых глин она равна всего 20— 30 м /г. [c.12]

    А. Ф. Добрянский 1301 предложил новую и очень оригинальиук> теорию образования и превращения нефти в природе. Различие в составе санропелей ничтожно по сравнению с разнообразием нефтей поэтому А. Ф. Добрянский считает, что это разнообразие зависит не от различия в источниках происхождения нефтей, как предполагали все прежние исследователи, а от условий превращения первичной нефти с единым составом и физико-химическими свойствами. Эта первичная нефть под влиянием температуры, каталитических воздействий, геологической и геохимической обстановки подвергается дальнейшим превращениям, в результате чего и образуются различные нефти. Эти превращения необратимы и сводятся к перераспределению водорода I энергии под каталитическим влиянием природных алюмосиликатов, глин и подобных минералов прн участии энергии земных недр. [c.335]

    Таким образом, наличие аномально высоких поровых давлений в нефтематеринских глинистых толщах и существование перепада давлений между нефтематеринскими породами и пластами-коллекторами имеют важное значение в реализации нефтематеринского потедашала пород и процессах, первичной миграции углеводородов. Этими параметрами в значительной мере определяется действие существующего в природе механизма, приводящего к концентрации рассеянных нефти и газа и образованию минимальных объемов непрерывной гомогеннсй фазы жидких и газообразных углеводородов, способных самостоятельно мигрировать в пористых средах и формировать залежи во встречающихся на путях их миграции ловушках. Перепадом давления между глинами и коллекторами и величинсй давления в коллекторах во многом шределяются состав и свойства образующих залежи жидких и газообразных углеводородов. [c.23]

    Мицеллярное строение наиболее распространенных известковоглинистых шламов можно представить следующим образом. В пространственной структуре существуют центры (узлы)—комплексные образования с ядром из карбоната кальция размером 5— 20 мкм. На поверхности этих частиц, заряженных обычно отрицательно, адсорбируются из водного солевого раствора молекулы воды и катионов металлов. Наряду с ними поверхностью частиц могут притягиваться положительно заряженные мелкие частицы гидроксидов железа, алюминия и других веществ. Этот слой является первичным слоем противоионов на ядре (рис. 8.1). Вокруг такой частицы располагаются более мелкие кристаллы глинистых компонентов (размером менее 0,5 мкм), представляющие собой, в свою очередь, сложные образования. Благодаря сильно развитой поверхности частицы глины обладают большим запасом поверхностной энергии. Ненасыщенные связи поверхностных узлов решетки способны прочно удерживать комплексы силикагеля, гиббсита, гидроксида железа. [c.274]

    Основным источником сырья при производстве алюминия является минерал боксит — гидроксид алюминия, в той или иной степени подвергшийся обезвоживанию. Боксит — осадочная порода, его название происходит от французского Baux (это городок во Франции, в окрестностях которого был найден боксит). Состав боксита может быть описан как хА1(0Н)з-1/АЮ(0Н) или АЬОз-гНгО (z 2). В нашей стране имеются большие месторождения также практически важного минерала нефелина (К, Na)2Al2(8104)2, или силиката натрия, калия и алюминия (первичный минерал). Разработана технология переработки нефелина на металлический алюминий с попутным получением ценного реагента — соды. К сожалению, до настоящего времени нефелин еще очень мало используется, хотя он добывается побочно наряду с апатитами и другими минералами и поэтому имеет низкую стоимость. Громадные количества алюминия входят в состав глины (вторичный минерал) различных разновидностей. Основой глины является каолинит АЬОз-25102-2Н20, но чистый каолинит (или каолин — белая глина) редок. Поэтому переработке глины на металлический А1 должна предшествовать сложная операция отделения примесей. Это делает более целесообразным получение А1 нз редко встречающегося и относительно дорогостоящего боксита, а не из вездесущей глины. [c.52]

    Первые три минерала относятся к первичным, остальные — к вторичным. Однако перечисленные минералы далеко не исчерпывают всего многообразия соединений железа, встречающихся в природе. Например, очень важен, но пока не перерабатывается на железо оливин (с. 234) — ортосиликат Ре (И) и Mg(П), главный минерал, слагающий основную силикатную оболочку и мантию Земли. Как правило, большинство горных и осадочных пород в том или ином количестве содержат примесь железосодержащих минералов сюда относятся глины (алюмосиликаты), силикаты, смешанооксидные минералы типа ильменита (см. с. 96) и др. Практически при переработке любой руды с целью выделения в индивидуальном состоянии соединений тех или иных элементов периодической системы приходится включать в технологическую схему стадию отделения железа (см., например, переработку боксита, с. 35). [c.115]

    Агрегаты со специфическими свойствами возникают в этой схеме без участия белков. Но полипептидные цепи сами образуются на поверхности агрегатов первичной РНК, которая начинает выполнять функции катализатора (отчасти их выполняют, как мы уже указывали, и частицы глин). Чем быстрее окутывается агрегат полипептидной оболочкой, тем он в общем устойчивей. В аг-ресатах могут возникать сочетания первичных форм матричной— м-РНК и транспортной — т-РНК. [c.385]

    Согласно представлениям П. А. Ребиндера [84] вода, адсорбируясь на поверхности глинистых частиц, проникает глубоко в поры м микротрещины материала. Благодаря расклинивающему давлению адсорбционных водных оболочек последние способствуют распаду агрегатов на составлярош,ие их первичные частички. Сюда ирисоед1 няется действие напряжений, возникающих в результате быстрого роста адсорбционных водных слоев. Благодаря адсорбционной водной оболочке, образующейся на глинистых частицах, последние раздвигаются, увеличивая тем самым общий объем, что и является причиной набухания глин. При этом теряет смысл по--нятие о первичной. .частице, поскольку помимо пептизацин отдельных агрегатов глинистых частиц на их первичные составляющие происходит диспергирование первичных частиц вследствие проникновения гидратных оболочек по трещинам внутрь частиц. [c.10]

    Механизм взаимодействия полимера с породами и дисперсными частицами в пластовых условиях при закачке ПДС заключается в следующем. Движущийся впереди суспензии полимерный раствор модифицирует поверхность породы вследствие адсорбции и механического удержания макромолекул полимера, снижая тем самым концентрацию раствора. Частицы глины и породы пласта, поступающие в виде суспензии, вступают во взаимодействие с макромолекулами полимера, адсорбированными на породе и находящимися во взвешенном состоянии. Первый фактор, с одной стороны, снижает проникновение в мелкие поры, а с другой — приводит к прочному удержанию дисперсных частиц, а второй — способствует флокуляции. Наличие свободных сегментов макромолекул после первичной адсорбции обеспечивает прочную связь дисперсных частиц образующихся полимердисперсных агрегатов с поверхностью пород, создавая тем самым объемную, устойчивую в динамическом потоке массу. [c.57]


Смотреть страницы где упоминается термин Глина первичные глины: [c.118]    [c.539]    [c.514]    [c.550]    [c.550]    [c.550]    [c.302]    [c.87]    [c.79]    [c.123]    [c.194]    [c.618]    [c.13]    [c.75]    [c.165]    [c.180]   
Химия коллоидных и аморфных веществ (1948) -- [ c.447 ]




ПОИСК





Смотрите так же термины и статьи:

Глины



© 2024 chem21.info Реклама на сайте