Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сепаратор Синтез-газ

    Очищенный от сернистых соединений синтез-газ сжимается в компрессоре 1 до давления 5—9 МПа, охлаждается в холодильнике 3 и поступает в сепаратор 4 для отделения сконденсировавшейся воды. Пройдя сепаратор, синтез-газ смешивается с циркуляционным газом, который поджимается до рабочего давления в компрессоре 2. Газовая смесь проходит через адсорбер [c.265]

    Себестоимость аммиака, т. е. целевая функция, зависит от количества поступающих на синтез газов, количества рециркулирующего потока, температуры Б холодном сепараторе, количества выбрасываемого газа и количества получаемого аммиака. Себестоимость можно рассчитать по сумме параметров базовой системы, состоящей из технологических переменных элемента процесса. В конечном итоге имеем  [c.335]


    Аппараты высокого давления находят широкое применение в различных отраслях промышленности при синтезах аммиака, метанола, мочевины, синтетических спиртов, полиэтилена, а также гидрирования масел, угля, жиров, и др. К таким аппаратам можно отнести реакторы, теплообменники различного назначения, реакционные колонны, скрубберы, сепараторы, автоклавы, аккумуляторы и т. д. Кроме того, аппараты такого типа широко используются в качестве резервуаров для хранения жидкостей и газов под высоким давлением. [c.221]

    Но весь процесс синтеза протекает таким образом, что количество аммиака, образующегося в колонне (е кг-моль), должно быть равно количеству его, выводимому в процессе всего цикла. Из предыдущего известно, что весь аммиак выводится из цикла через сепаратор й кг-моль) и с продувочными газами (0,176 кг-моль). Отсюда [c.364]

    На стадии синтеза аммиака применяются колонны синтеза и конденсации, сепараторы, конденсаторы, испарители аммиака, подогреватели, циркуляционные компрессоры и другое оборудование. Опасность для обслуживающего персонала на стадии синтеза обусловливается взрывоопасностью горючих газов и паров аммиака при смешении их с воздухом, отравляющим действием аммиака, возможностью ожогов жидким аммиаком, применением высоких давлений и температур. [c.28]

    В цехе синтеза диметилдиоксана в системе аварийного сбрасывания углеводородов С4 из колонн ректификации масляного слоя был установлен полый, сепаратор. Газы стравливания после сепаратора направлялись в факельную сеть, а жидкость предполагалось откачивать центробежным насосом, установленным в производственном помещении на расстоянии более 50 м от сепаратора. [c.164]

    Продукты карбонилирования в смеси с циркулирующим синтез-газом охлаждаются, проходят сепараторы высокого давления, дросселируются и после сепаратора низкого давления поступают на сернокислотную декобальтизацию. [c.56]

    II — холодильник синтез-газа 12 — холодильник конвертированного газа 13 — сепаратор конвертированного газа И — насос регенерированного моноэтаноламинового раствора 15 — сепаратор-конденсатор конвертированного газа 16 — абсорбционная колонна 7 — кипятильники моноэтаноламинового раствора [c.50]

    По технологическому назначению оборудование систем синтеза аммиака можно подразделить на следующие группы реакционные аппараты, холодильники-конденсаторы, сепараторы и фильтры, циркуляционные нагнетатели. [c.62]


    В агрегате синтеза аммиака предусмотрено автоматическое регулирование температуры в колоннах синтеза, уровня жидкого аммиака в сепараторе и конденсационной колонне, температуры газа, выходящего из аммиачного конденсатора, состава циркуляционного газа в зависимости от содержания инертных примесей, выхода жидкого аммиака из газоотделителя, давления в га- [c.70]

    Существующие схемы управления для отделения синтеза аммиака предусматривают ряд сепаратных контуров управления температура горячей точки регулируется изменением расхода циркуляционного газа по байпасу мимо встроенного теплообменника колонны синтеза температура циркулирующего газа (ЦГ) на выходе колонны синтеза используется для изменения расхода ЦГ по байпасу вокруг выносного теплообменника (данный контур управления имеет характер резервного и часто в практике ведения технологического процесса не используется). Предусмотрена автоматическая стабилизация уровней испарителя жидкого аммиака (ЖА) с помощью подачи ЖА, а также уровней в сепараторе и кубе конденсационной колонны регулированием отбора ЖА на склад. Отделение синтеза иногда функционирует при постоянной продувке. [c.342]

    Следующим этапом синтеза оптимальной технологической схемы процесса деметанизации является дальнейшее снижение потерь этилена. Для этого необходимо увеличить мощность холодильника на линии питания, что приводит к схеме № 5 (рис. 1У-20). Для схемы № 5- характерно уменьшение в 4 раза потока флегмы, что позволяет снизить потери этилена в результате понижения температуры в сепараторе верхнего продукта. В це- [c.185]

    Аппараты схемы соединены между собой различными связями, в том числе обратными. Так, часть реакционной смеси (около 10%) после первой ступени компрессора 19 направляется в смеситель 1, в котором она смешивается с сырьем — природным газом, что обеспечивает работу реактора 2. Смесь, вышедшая из колонны синтеза аммиака 23, проходит конденсаторы 24 и 25, а также сепаратор 20, где отделяется целевой продукт — жидкий аммиак, и направляется опять в колонну синтеза, т. е. происходит рециркуляция. [c.31]

    Природный газ из газопровода под давлением 1 МПа проходит сепаратор 4, где отделяются тяжелые углеводороды, сжимается компрессором 5 до 4 МПа и смешивается с азотоводородной смесью (синтез-газом), нагнетаемой компрессором 1. Далее газовая смесь подогревается до 400°С в подогревателе 25 и поступает в [c.35]

    В установках продуцирующего предкатализа гидрирование протекает на железном плавленом катализаторе при 550—600°С и высоком давлении. В этом случае гидрирование СО, СО2 и О2 происходит в колонне одновременно с синтезом аммиака. На рис. 2 приведена схема моноэтаноламиновой очистки и каталитического метанирования азотоводородной смеси. Конвертированный газ под давлением 2,8 МПа при температуре около 300°С поступает в выносные кипятильники /7, в которых из отработанного моноэтаноламина при кипении происходит окончательная десорбция СО2. По выходе из кипятильников конвертированный газ охлаждается в сепараторе-конденсаторе 15 и холодильнике 12. Пройдя сепаратор 13, газ поступает в нижнюю часть абсорбционной колонны 16. Сверху колонна орошается свежим 20 /о-ным раствором моноэтаноламина (МЭА). Раствор МЭЛ подается в колонну центробежным насосом 14, предварительное охлаждение происходит в аппаратах 5 и 6. По выходе из абсорбционной колонны очищенная от СО2 азотоводородная смесь проходит сепаратор 7 и подогревается в теплообмепиике 8 и кипятильнике /7 до 300°С. Далее газ поступает сверху в реактор метаниро- [c.49]

    Прореагировавшая газовая смесь с температурой около 400°С отводится из нижней части колонны синтеза 14 в котел-утилизатор //на охлаждение до 200°С. Дальнейшее охлаждение газовой смеси до 20°С происходит в теплообменнике 10, водянохм холодильнике первичной конденсации и холодном газовом теплообменнике 5. По выходе из теплообменника 5 циркуляционная (прореагировавшая) газовая смесь смешивается со свежей азотоводородной смесью, и цикл повторяется. Жидкий аммиак выделяется в первичном 8 и вторичном 6 сепараторах, проходит магнитные фильтры 7 и направляется в сборники жидкого Эхммиака 12 и 13. При понижении давления до 2—2,5 МПа из жидкого аммиака выделяются растворенные газы, которые называют танковыми. В установке улавливания паров аммиака из танковых газов получают аммиачную воду. Жидкий аммиак из промежуточного сборника поступает на склад. [c.62]

    К наиболее опасным нарушениям режима отделения синтеза аммиака относится неправильная выдача жидкого аммиака. Повышение уровня жидкости в конденсационных колоннах может привести к попаданию жидкого аммиака в колонны, резкому снижению температуры катализатора и к поломке насадки колонн синтеза. Из-за повышения уровня жидкого аммиака в первичных сепараторах возможно их переполнение и переброс жидкого аммиака в циркуляционные компрессоры. Вследствие этого в цилиндрах нагнетателей возникают гидравлические удары, которые могут привести к разрушению компрессоров. Понижение уровня в сепараторах и конденсационной колонне также опасно, так как при этом может исчезнуть гидравлический затвор и газ под высоким давлением устремится в трубопроводы жидкого аммиака. В результате возможно разрушение газоотде-лителя. Если при этом даже и срабатывают предохранительные устройства, неизбежен разлив жидкого аммиака и возможно отравление им людей. При малейших неполадках в работе автоматического управления следует переходить на ручное обслуживание, отбирать жидкий аммиак из сепараторов и следить по манометрам за его давлением. [c.67]


    В схеме, приведенной на рис. 1-13, можно выделить участки, соответствующие всем рассмотренным видам технологических связей. Например, аппараты от конвертора метана до абсорбера 12 соединены последовательно, а два трубчатых конвертора метана 4 — параллельно. Колонна синтеза аммиака 23, водяной конденсатор 24 теплообменник 21, аммиачный конденсатор 25, сепаратор 20 и турбоциркуляционный насос 22 объединены в замкнутую подсистему. [c.31]

    В технологической схеме производства карбамида с рециркуляцией аммиака и диоксида углерода, в частности по методу Миллера [97] (рис. VIII-8), имеются замкнутые тех1нологиче-ские циклы, обеспечивающие рекуперацию аммиака, возвращаемого после сепаратора 5 в поток питания, и рекуперацию потока РУАС, подаваемого насосом РУАС высокого давления 9 в колонну синтеза 4. [c.236]

    Прямое хлорирование этилена происходит в жидкой фазе в присутствии хлорного железа в качестве катализатора (рис. IX-1) [110]. Сухие хлор и этилен приблизительно в экви-молярных отношениях подаются через распределительные устройства в реактор — барботажную колонну синтеза I. Реакция хлорирования этилена необратимая и экзотермическая протекает быстро в растворе дихлорэтана. Газовый поток из реактора проходит через сепаратор 2 и скруббер 3, где в результате щелочной очистки из него удаляются непрореагировавшне газы и следы хлористого водорода. После скрубберов несконден-сировавшиеся газы (преимущественно непрореагировавшие этилен и хлор) возвращаются в реактор 1. Поток жидкости из реактора направляется для нейтрализации в декантатор 4 и для промывки в декантатор 5 и далее в дистилляционную колонну 8 для удаления тяжелых остатков, а затем в промывную колонну, где раствором щелочи из него извлекают некоторые примеси. Сырой продукт подается в дистилляционную колонну для очистки, жидкий ДХЭ с концентрацией 99% (масс.) отбирается в верхней части колонны. [c.260]

    Газ из газгольдера 8 сжимается компрессором 10 до га1МПа, проходя после каждой ступени холодильники и сепараторы, не показанные па схеме, В абсорбере 11 он промывается диметил-формамидом или N-метилпирролидоном, а непоглотившийся газ (Нг, СН4, СО, СО2) проходит скруббер 12, где при орошении водным конденсатом улавливается унесенный им растворитель. После этого 1аз можно использовать в качестве синтез-газа или топлива. [c.85]

    Схема синтеза глицерина из эпихлоргидрина (рнс. 60). Эпихлоргидрин и 5—6%-ный раствор соды эмульгируют в насосе 1, где смесь сжимают до 0,6—1 МПа, и закачивают ее через подогреватель 2 в трубчатый реактор 3. В нем протекают описанные ранее реакции и образуются глицерин и его простые эфиры. Реакционную смесь дросселируют в клапане -4 до атмосферного давления, а в сепараторе 5 отделяют газо-паровую фазу (СО2 и водяные пары) от жидкой (водные растворы глицерина, его эфиров, Na l и непревра- [c.181]

    Карбамид из бункера 1 подается транспортером 2 в реактор 3, обогреваемый топочными газами. Реактор может быть выполнен в виде аппарата с псевдоолсиженным слоем катализатора. Образующаяся там смесь вместе с аммиаком сразу поступает во второй реакционный аппарат 4, где происходит синтез меламина. Смесь аммиака, диоксида углерода и сублимированного мелами-па охлаждается в смесителе 5 за счет впрыскивания холодной воды. В сепараторе 6 диоксид углерода, аммиак и пары воды отделяются от суспензии меламина в воде. Газо-паровая смесь поступает в насадочный скруббер 7, орошаемый охлажденным в холо-дпльнике 8 водным раствором аммиака. При этом вода конденсируется, а диоксид углерода дает с аммиаком карбонат аммония, водный раствор которого выводят из куба колонны 7 и направляет в цех производства карбамида. Избыточный аммиак, не погло-"ивщийся в скруббере 7, освобождается от воды в насадочной колонне 9, орошаемой жидким аммиаком (испарение жидкого ам->1иака способствует конденсации воды). Аммиачную воду из куба колонны 9 направляют в аппарат 7, где ее используют для абсорбции диоксида углерода, а рециркулирующий газообразный аммиак возвращают в реактор 3. [c.236]

    Этот газ тоже разделяют па два потока один проходит теплообменник 4 и служит для подогрева части исходной смеси до температуры синтеза, а другой направляют в парогенератор 6, где его тепло попользуют для получения пара высокого давления. Потоки газа после этого объединяют и охлаждают в холодильнике 7, где мгта юл конденсируется и отделяется от газа в сепараторе 8 высо- [c.530]

    КОГО авления. Газ с верха сепаратора дожимают циркуляционным К0МП1 ессором 2 и возвращают на синтез. [c.531]

    Органический слой с верха сепаратора 12 подают последовательно в две ректификационные колонны. В первой (13) отгоняют образе вавшийся при разложении диоксана изобутилен, который возврз1цают на первую стадию синтеза. Затем в колонне 14 отделяют изопрен от более высококипящего остатка (непревращенный диоксан и побочные продукты). Для окончательной очистки изопрен громывают водой, осушают азеотропной перегонкой и прово- 1ят заключительную ректификацию. На этих стадиях к нему во из-Г)еж .11ие полимеризации добавляют ингибитор. [c.559]

    Математическая модель промышленного процесса синтеза метанола включает в себя уравнения, описывающие слой катализатора, смеситель газовых потоков, конденсатор-сепаратор. Главной частью модели являются дифференциальные уравнения материального баланса ключевых компонентов (оксида утлерода и метанола) и дифференц55альное уравнение теплового баланса для слоя катализатора  [c.66]

    Далее газ поступает на очистку от СОг в скруббер, орошаемый холодным раствором моноэтаноламина, где при 30—40°С происходит очистка газа от СОг, СО и Ог. На выходе из абсорбера газ содержит примеси кислородсодержащих ядов (СО до 0,3%, СО2 30—40 см7м ), которые гидрируются при 280—350°С в метана-торе на никелевом катализаторе. Теплота очищенного газа после метанатора используется для подогрева питательной воды дальнейшее охлаждение и сепарация выделившейся воды проводятся в аппарате воздушного охлаждения и влагоотделителе (на схеме не показано). Для сжатия азотоводородной смеси до 30 МПа и циркуляции газа в агрегате синтеза принят центробежный компрессор с приводом от паровой конденсационной турбины. Последнее циркуляционное колесо компрессора расположено в отдельном корпусе или совмещено с четвертой ступенью. Свежая азотоводородная смесь смешивается с циркуляционной смесью перед системой вторичной конденсации, состоящей из аммиачного холодильника и сепаратора, проходит далее два теплообменника и направляется в полочную колонну синтеза. Прореагировавший газ при 320—380°С проходит последовательно водоподогреватель питательной воды, горячий теплообменник, аппарат воздушного охлаждения и холодный теплообменник, сепаратор жидкого аммиака и поступает на циркуляционное колесо компрессора. Жидкий аммиак из сепараторов направляется в хранилище жидкого аммиака. [c.98]

    У — смеситель 2, /4 — насосы 3 —сборник жидкого аммиака - .— конденсатор 5 — колонна синтеза 5 — дроссельные вентили 7 — промывная колонна 5 — ректификационная колона I ступени 9, // — подогреватели /б) — сепаратор /2 — вакуум-выпарной аппарат 13 — сборник плава карбамида /5 — грануляционная баитня /б — транспортер /—диоксид углеводорода под давлением 20 МПа из компрессора // — жидкий аммиак /// — газ в абсорбер аммиака V — раствор углеаммонийных солей со И ступени дистилляции плава V —к конденсатору и вакуум-насосу V/гранулированный карбамид [c.159]


Смотреть страницы где упоминается термин Сепаратор Синтез-газ: [c.213]    [c.29]    [c.7]    [c.50]    [c.51]    [c.61]    [c.196]    [c.23]    [c.32]    [c.260]    [c.262]    [c.129]    [c.519]    [c.226]    [c.228]    [c.229]    [c.230]    [c.133]    [c.212]    [c.92]    [c.93]    [c.167]   
Технология синтетического метанола (1984) -- [ c.211 ]




ПОИСК





Смотрите так же термины и статьи:

Сепараторы



© 2025 chem21.info Реклама на сайте