Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массопередача катализатора

    Если даже внешняя массопередача протекает достаточно быстро, реагенты могут достигнуть активной поверхности, находящейся внутри пористой таблетки, только проделав длинный извилистый путь в норах катализатора. [c.121]

    В действительности, однако, вопрос об устойчивости адиабатического слоя более сложен. Если он представляет собой неподвижный слой катализатора и существует заметное сопротивление внешней массопередаче к поверхности зерен катализатора, то возникают новые проблемы устойчивости, так как каждое зерно может работать в высокотемпературном или низкотемпературном режиме. При некоторых условиях стационарный режим слоя зависит от начального состояния при пуске реактора. Этот вопрос исследован Амундсоном и Лю (см. библиографию на стр. 252), но подробное его изложение выходит за рамки настоящей книги. [c.249]


    При проведении химических реакций часто применяют контактирование газов или жидкостей с твердыми частицами. В наиболее распространенных случаях твердое вещество является катализатором. Обычно твердое вещество гранулируют для улучшения его реакционной способности или когда оно используется в нагревателях в качестве твердого теплоносителя. Такие процессы чаще всего проводят в потоке, и течение сопровождается падением давления по направлению потока. Кроме того, обычно наблюдаются значительные тепловые эффекты, а иногда сам процесс лимитирует скорость диффузионной массопередачи. Нередко все эти явления сопутствуют друг другу. [c.241]

    Массопередача между газом и поверхностью твердых гранул часто определяет механизм гетерогенной реакции, особенно в промышленных условиях, когда ограничения потери напора, вызванные экономическими соображениями, заставляют выбирать такую скорость потока, при которой ни скорость адсорбции, ни скорость реакции на поверхности катализатора не являются определяющими. В процессах с псевдоожиженным слоем скорость потока ограничивается из-за необходимости свести к минимуму унос твердых частиц. [c.283]

    Для более точных расчетов в работе [5] предлагается формула определения коэффициента массопередачи к взвешенной частице катализатора. В общем виде формула имеет вид  [c.187]

    Здесь — линейный размер частиц катализатора /с 2 — коэффициент массопередачи от твердой поверхности к жидкости 1) — коэффициент молекулярной диффузии Зс = — критерий [c.187]

    Следует еще остановиться на определении величины — межфазного коэффициента массопередачи в уравнении (10.11) — применительно к суспендированному катализатору. Поскольку в процессах с гетерогенным катализатором реакция идет на поверхности последнего, то перенос массы на границе фаз протекает в отсутствие-химической реакции. Поэтому для определения значения коэффициентов межфазного переноса в аппаратах с суспендированным катализатором, где велика доля жидкой фазы, инертной в отношении химической реакции, очевидно, можно пользоваться формулами для расчета межфазного массообмена, приведенными в гл. 12 настоящей книги. [c.188]

    Этот факт оказывает определяющее влияние при расчете скорости массопередачи и коэффициентов массопередачи к поверхности катализатора в двухфазных и многофазных гетерогенно-каталитических реакторах. В реакторах этого типа реакция протекает на поверхности или в объеме зерна катализатора. Поэтому при вычислении коэффициентов массопередачи к поверхности катализатора влияние химической реакции обычно не учитывается. [c.227]


    Процесс протекает в две стадии 1) диффузия из потока к поверхности катализатора (массопередача) 2) окисление примесей на поверхности контакта (кинетика). [c.308]

    Р — коэффициент массопередачи, м/с а — удельная доступная поверхность катализатора, м /м  [c.309]

    Средняя температура катализатора 7 с = 0,5(7 н+7 к). Коэффициент массопередачи определяют по формулам [c.310]

    Здесь р — коэффициент массопередачи и С о — кощентрация реагента в потоке, омывающем частицу катализатора. [c.106]

    Сопротивление теплопередаче из ядра потока к внешней поверхности катализатора, как будет показано в разделе III.5, оказывает на скорость процесса гораздо большее влияние, чем внешнее сопротивление массопередаче. Мы пока не будем обсуждать этого вопроса и зададим граничное условие для температуры на внешней поверхности зерна в форме, не учитывающей внешнего теплового сопротивления  [c.125]

    Пользуясь уравнениями (III.107), (III.108) и граничными условиями (III.109), (III.110), можно получить оценку условий, при которых существует заметный перепад концентрации и температуры между поверхностью катализатора и внешней средой. Как было показано в разделе III.2, внешнее сопротивление массопередаче начинает сказываться только, когда реакция локализуется в тонком слое, толщина которого сравнима с толщиной диффузионного пограничного слоя б. Действительно, поскольку величина о является мерой проникновения реакции в глубь пористого катализатора, так что d /dx W о, из граничного условия (III.109) следует  [c.132]

    Здесь не учитывается сопротивление массопередаче из ядра потока к внешней поверхности катализатора, играющее заметную роль только на начальной стадии процесса. [c.147]

    Конструкция реактора должна обеспечивать поддержание определенных значений следующих основных параметров процесса 1) времени реакции 2) температуры в различных точках реакционной зоны 3) давления в реакторе 4) скорости массопередачи к активной поверхности катализатора и между фазами (для многофазных процессов) 5) активности катализатора. [c.261]

    В трубчатых реакторах имеются хорошие условия для отвода тепла от катализатора. Это объясняется тем, что отношение поверхности теплоотдачи к объему катализатора в них весьма велико. Кроме того, в трубчатых реакторах применяют большей частью высокие слои катализатора и соответствующие им большие линейные скорости потока газа, что обеспечивает приемлемые значения констант тепло- и массопередачи. Указанные преимущества позволяют осуществлять в трубчатых реакторах сильно экзотермические процессы) например, различные реакции каталитического окисления). [c.267]

    Здесь X — координата вдоль реактора 81 и Бз — доли сечения реактора, занимаемые газом и катализатором — линейные скорости потока в жидкости и газе О — эффективный коэффициент продольной диффузии в жидкой фазе Р1 — коэффициент массопередачи между фазами а — поверхность раздела фаз в единице объема реактора г[з — обратное значение коэффициента Генри — удельная внешняя поверхность катализатора в пересчете на единицу длины реактора и единицу сечения /) — эффективный коэффициент диффузии в капиллярах катализатора 5 — координата по радиусу зерна Р ц — внутренняя поверхность зерна катализатора р — скорость реакции по компоненту А в пересчете на единицу внутренней поверхности катализатора ус — стехиометрические коэффи- [c.302]

    Здесь С ф — концентрация вещества в плотной фазе Сг. п — концентрация вещества в газовом пузыре и р — объемный коэффициент массопередачи между фазами — коэффициент массопередачи к поверхности катализатора а и Сн — соответственно полная и внешняя удельная поверхность твердых частиц, отнесенная к единице объема всего слоя р — скорость образования данного вещества, отнесенная к единице поверхности катализатора С ат — двухмерная концентрация вещества на катализаторе кат — коэффициент перемешивания твердых частиц. [c.312]

    II г ( п), зависящими от температуры активной поверхности Тп -Очевидно, именно в процессах, в которых возможно дальнейшее превращение целевого продукта, диффузионное торможение может играть наибольшую роль, оказывая сильное влияние на их избирательность. Если С1 и С2 — концентрации веществ А и А2 в потоке, С (п- С 2п — концентрации тех же веществ у поверхности катализатора и 6 — коэффициент массопередачи, который будем считать одинаковым для обоих веществ, то уравнения баланса вещества у активной поверхности имеют вид  [c.378]

    Другим примером является гетерогенная реакция, протекающая на границе двух фаз (т. е. на поверхности катализатора). Реагенты подходят к реакционной поверхности за счет диффузии в этом случае массопередача к реакционной поверхности может значительно повлиять на общую скорость превращения. Следовательно, химиче- [c.152]


    Гомогенная реакция в одной и более фазах Гетерогенная реакция на границе раздела двух фаз Гомогенная реакция с удалением продукта (например, экстракция жидкости жидкостью, стр. 157) Реакция на поверхности твердого катализатора (стр. 171) Массопередача с химической реакцией(например, химическая абсорбция газа, стр. 160) Реакции в слое псевдо-ожиженного твердого тела (например, сжигание углерода, стр. 181) [c.153]

    В большинстве случаев одна из фаз, например фаза , является веществом, реагирующим с компонентами дисперсионной среды / (или катализатором реакции) в этом случае = 0. Тогда приведенное выше уравнение показывает, что скорость образования J равна массовому потоку У от поверхности в объем среды / значение ее положительно для образующихся веществ и отрицательно для исходных. Величина такого массового потока определяется только при совместном учете массопередачи и химической реакции на бесконечно малой поверхности раздела фаз (см. стр. 171). [c.157]

    Кривые показывают, что степень использования внутренней поверхности катализатора снижается по мере увеличения скорости химической реакции и физического сопротивления движению реагента. Кроме того, видно, что в данной системе реагенты — катализатор увеличение фактора эффективности связано с размером частицы и в меньшей степени — с коэффициентом массопередачи р [последний приблизительно нронорционален Изменение этих двух параметров в опытах по исследованию превращения позволило установить, что физический перенос влияет на полную скорость превращения. Таким образом, если на скорость превращения не влияет скорость движения жидкости, то можно утверждать, что торможение внешней массопередачей отсутствует внутренняя диффузия, однако, может быть ограничивающим фактором. Чтобы получить окончательное решение, исследуют влияние диаметра частиц. [c.177]

    Проверено, что при условиях реакции массопередача и внутренняя диффузия в зернах катализатора существенно не снижают скорости химического превращения. [c.193]

    Массопередача через газовую пленку. Реагенты должны продиффундировать из основного потока к наружной поверхности катализатора. [c.411]

    Массопередача продуктов реакции через газовую пленку. Затем продукты движутся из отверстий пор катализатора в основной газовый поток. [c.412]

    Стадия массопередачи к наружной поверхности гранул и стадия химической реакции на поверхности катализатора последовательны одна по отношению к другой, а диффузия в порах сопровождается реакцией. Поэтому процесс массопередачи и химическую реакцию можно анализировать раздельно, по очереди, тогда как процесс диффузии в порах и химическая реакция на их поверхности должны исследоваться совместно. [c.412]

    Влияние процессов переноса к наружной поверхности катализатора. Прежде всего надо выяснить, не зависит ли скорость реакции от процессов переноса к внешней поверхности Это можно сделать одним из многих способов. Так, когда известны экспериментальные кинетические данные, то полученное из них среднее значение константы скорости первого порядка может быть сопоставлено с расчетным коэффициентом массопередачи для проточной системы, определяемым уравнением (ХП,22). Во всех случаях коэффициент массопередачи является верхним пределом скорости реакции, т. е. [c.431]

    Простейший способ продемонстрировать такой метод — это ограничиться рассмотрением только трех стадий процесса —3, 4 и 5. Этому случаю соответствует реакция на пепористом катализаторе в условиях, когда внешняя массопередача идет достаточно эффективно так что Ав А = в активные центры поверхности ката- [c.123]

    Литература по массопередаче с химической реакцией в системах твердое тело — жидкость очень обильна и здесь может быть дана только очень краткая аннотация. Этот вопрос детально рассмотрен в ряде книг [47—52], посвященных каталитическим реакциям. Недавно было представлено много работ по факторам эффективности пористых катализаторов [63—60]. Среди прочих в работах [51—64] обсуждены некаталитические реакции газ—твердое тело. Поверхностные реакции были теоретически исследованы в ряде статей [65—74]. Обзоры исследований в области массопередачн в пограничных слоях были представлены Кузиком и Хаппелем [75] и Вегером и Хельшером [76]. Тема обсуждалась в разделах 3.4, [c.165]

    Для таких процессов, как Аидкофазные с использованием твердого kata-лизатора совмещение реакции с массообменом, например, ректификацией, позволяет интенсифицировать массопередачу вещества между ядром потока и катализатором за счет увеличения скорости потоков и турбулизации. [c.191]

    Количественный анализ массопередачи в портстой структуре катализатора и связь ее с наблюдаемыми (кажущимися) характеристиками реакций является предметом многочисленных исследований. Общий теоретический подход при анализе рассматриваемых систем, основанный на известных принципах диффузионной кинетики, сводится к выводу уравнений, описьшающих одновременное протекание массопереноса и химической реакции на активной поверхности катализатора. При этом учитьгеается, что реагенты и продукты реакции диффундируют в грануле катализатора в противоположных направлениях. [c.79]

    Определяя коэффициент массопередачи для потока малой интенсивности, Кузик и Хэппел применили модель, учитывающую свободную поверхность. Кроме того, исследовался конвективный поток массы большой интенсивности в направлении, перпендикулярном поверхности частицы катализатора. В первом случае предполагалось, что частица окружена некоторым слоем вещества, причем на этот слой не влияют другие частицы. [c.85]

    VIII-8), что в его экспериментальном диапазоне зависимость между j i и к, по существу, не зависит от изменения высоты осевшего слоя (к аналогичным выводам пришли также Оркатт с соавт. и Ланкастер ). Это означает, что эффективности катализатора в верхней и нижней частях реактора сопоставимы. Данное заключение примечательно, так как, согласно измерениям, дискретная фаза диспергирована более тонко в основании, чем в верхней части псевдоожиженного слоя со свободно барбо-тирующими пузырями Эти наблюдения качественно объяснимы, если предположить, что уменьшение поверхности пузыря и скорости переноса по высоте слоя сопровождается одновременным понижением скорости реакции за счет падения концентрации реагента (т. е. перемешивание в непрерывной фазе неполное). Следовательно, если, например, скорость реакции была бы лимитирующим фактором в основании слоя, то это положеняе должно было бы еще сохраниться на выходе из него, где скорости реакции и массопередачи были бы меньше и в результате не наблюдалось бы никакого влияния высоты слоя на его характеристику. Иная ситуация может возникнуть при больших расходах газа, когда возможно уменьшение скорости межфазного обмена газом из-за образования очень больших пузырей или при высоких скоростях реакции. [c.367]

    Вопрос о коэффициенте межфазного массопереноса в случае катализсггора в виде утопленной насадки изучен недостаточно. Можно предполагать, что при достаточно малой толщине пленки жидкости на поверхности катализатора будет проявляться влияние химической реакции на коэффициент массопередачи, аналогично тому, как это показано в гл. 13 для двухфазного реактора. Однако поскольку доля такой поверхности в общей поверхности [c.189]

    В общем случае в многофазном жидкостном реакторе (МЖР) воз-монлна массопередача как через сферическую, так и через плоскую границу раздела фаз. Массопередача через плоскую границу раздела фаз имеет место в трехфазных системах, когда, например, реакционная фаза образует пленку на поверхности твердого катализатора. Задача расчета скорости массопередачи в этом случае возникает сравнительно редко. Наиболее типичным для МЖР является случай массопередачи через сферическую границу раздела фаз между пузырями или каплями транспортной фазы и реакционной сплошной фазой. Этот случай и будет рассмотрен нами подробно. [c.194]

    Как уже указывалось, процессы массопередачи и химической реакции не являются полностью независимыми. Поэтому в случае неравнодоступной поверхности нельзя вычислять макроскопическую скорость гетерогенного процесса, просто приравнивая величину q [см. уравнение (111.12)] к скорости реакции на активной поверхности. Так как локальная скорость массопередачи к различным участкам поверхности неодинакова, при этом возникает тем большая ошибка, чем больше перепад концентрации реагента вдоль активной поверхности. К счастью, в наиболее важном для технологии случае.— в случае процессов, протекающих в зернистом слое катализатора, поверхность твердых частиц можно, по-видимому, с достаточной степенью точности считать равнодоступной в диффузионном отношении. Эксперименты по определению р в зернистом слое [16] показывают, что локальные значения изменяются вдоль поверхности довольно нерегулярно, оставаясь, однако,,величинами одного порядка. Исключение составляют небольшие участки близ точек соприкосновения твердых частиц, практически не участвующие в процессе из-за очень медленного подвода к ним реагентов. Приближение равнодоступной поверхности [1 ] приводит к единственному практически приемлемому методу расчета процессов в зернистом слое, и мы будем в дальнейшем широко им пользоваться. [c.105]

    Интенсивность массопередачи к внешней поверхности зерен катализатора зависит от конструкции контактного аппарата. Ее можно повысить, увеличив линейную скорость потока. Однако одновременно возрастает гидравлическое сопротивление слоя. Скорость вну енней диффузии зависит только от структурь пористого каталнз тора н свойств реагирующей среды. Уменьшение размера зерен снижает отрицательные последствия внутридиффузионного торможеннй, позволяя полнее использовать реакционный объем. Однако при этом также повышается гидравлическое сопротивление слоя частиц. При переводе процесса в кипяпщй слой, где можно использовать мелкие частицы, не повышая гидравлического сопротивления слоя, возникают специфические затруднения с диффузией реагентов между различными частями потока газов. [c.263]

    Трубчатый каталитический реактор (обычно труба или ряд параллельных труб, заполненных таблетками катализатора) ужо упоминался в главе II (стр. 43) при рассмотрении изотермических З словпй работы. В главе IV (стр. 123) описана теорпя тепловых эффектов и внешнего теплообмена предполагалось, что как температура, так и состав реакционной смесп однородны в каждой секции реактора. Однако это во многом зависит от возможности теило-и массопередачи в направленип, перпендикулярном к основному потоку. Если такая возможность ограничена, как, например, прп экзотермических реакциях в охлаждаемом реакторе, содержащем таблетки катализатора, то температура и, следовательно, степень превращения вблизи осп трубы значительно выше, чем около стенок. [c.188]

    Установки каталитического крекинга с реакторными блоками использующими псевдоожиженный слой твердого микросфериче ского катализатора, получают преимущественное развитие и яв" ляются наиболее перспективными для крупнотоннажных производств. Устойчивая турбулизация двухфазной системы в псевдоожиженном (кипящем) слое обеспечивает интенсивную тепло-п массопередачу между фазами и постоянство температур во всем объеме слоя. Изотермичность и высокая теплопроводность псевдо-ожиженного слоя способствует стабильности химических реакций между реагентами. Благодаря увеличению поверхности соприкосновения межфазные процессы идут с высокими скоростями. Конструктивное исполнение реакторных блоков каталитического крекинга обусловливается химизмом процесса, а также условиями фазового взаимодействия реагентов с катализаторами —давлением и температурой. Реакторные блоки установок с крупно-гранулированным катализатором значительно уступают по своим технико-экономическим показателям блокам с кипящим слоем микросферического катализатора, особенно блокам, в которых используются лифт-реакторы с полусквозными потоками двухфазных систем, где конверсия происходит в прямоточной восходящей части аппарата. Несложная система циркуляции микросферического катализатора, а также большая гибкость по перерабатываемому сырью позволяют создавать реакторные блокн каталитического крекинга единичной мощности до 4,0 млн. т/год. [c.388]


Смотреть страницы где упоминается термин Массопередача катализатора: [c.92]    [c.93]    [c.204]    [c.289]    [c.257]    [c.262]    [c.162]    [c.186]    [c.292]    [c.412]   
Массопередача в гетерогенном катализе (1976) -- [ c.81 ]




ПОИСК





Смотрите так же термины и статьи:

Массопередача

Массопередача массопередачи



© 2025 chem21.info Реклама на сайте