Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бромид-иона комплексы, с ионом железа

    Метод Фольгарда [индикатор — тиоцианатиые комплексы железа (1П) . Реакцию взаимодействия серебра с тиоцианатом используют для определения галогенидов методом обратного титрования. По этому методу к анализируемому раствору галоге-нида (хлорида или бромида) добавляют избыток титрованного раствора AgNOa и не вошедшее в реакцию количество Ag+ оттитровывают тиоцианатом калия или аммония в присутствии ионов Fe + (метод Фольгарда). [c.259]


    Мешающие вещества. Определению хлоридов мешают ацетаты, бромиды, иодиды, роданиды, оксалаты и сульфиды, которые, так же как хлорид-ионы, разрушают комплекс ртути(II) с дифенилкарбазоном, а также ионы меди, железа, кобальта, цинка, кадмия и свинца, которые взаимодействуют с дифенилкарбазоном с образованием окрашенных соединений. Поэтому указанные ионы должны быть предварительно удалены. Небольшие количества меди можно замаскировать триэтаноламином. Реакцию проводят при pH = 3, при этом мешающее действие ионов металлов уменьшается. [c.308]

    Ионизация полимерной цепи происходит также в результате образования комплексных соединений с солями металлов, прежде всего с хлоридами и бромидами цинка, кобальта, кадмия, железа, меди, никеля, олова и др. Реакция протекает на вальцах при добавлении к бутадиен-метилвинилпиридиновому каучуку солей металлов в водном или спиртовом растворе. Продукты реакции окрашиваются в яркие цвета, характерные для соответствующих комплексов солей металлов с пиридином. В результате образования комплекса ион металла оказывается присоединенным к полимерной цепи. Наиболее вероятны следующие продукты взаимодействия пиридиновой группы и галогенида металла (например, хлорида цинка)  [c.338]

    Число мешающих ионов велико, это ионы, образующие труднорастворимые соли серебра (например, цианид и роданид) или осаждающиеся в кипящей НЫОз [например, висмут(И1), сурьма (П1)], металлы, образующие галогенидные комплексы [например, ртуть(П), кадмий(П), олово(1У), хром(П1)], соединения, восстанавливающие серебро (I) и, наконец, железо (Н1). Бромид и иодид хорошо отделяются при окислении и могут быть определены в виде свободных галогенов. [c.291]

    Препятствующие анализу вещества. Определению мешают трехвалентное железо, вольфрам и медь, так как они дают с ионом родана окрашенные соединения. Большие количества хлоридов и бромидов связывают висмут в бесцветные комплексы и тем самым уменьшают чувствительность реакции. В присутствии иодида роданидный комплекс висмута вообще не образуется, так как иодидный комплекс прочнее. Вредное влияние железа устраняется восстановлением его до двухвалентного. В качестве восстановителя применяются хлорид олова (II), сернистая кислота, хлорид титана (III) .  [c.204]

    Для комплексов катионов металлов первой группы (во внешней электронной оболочке находится 2 или 8 электронов) и для некоторых переходных металлов (с недостроенным -подуровнем) основным фактором является размер лигандов. Фторидные комплексы прочнее, чем хлоридные, а хлоридные прочнее бро-мидных и иодидных. Так, бериллий, магний, алюминий, лантан, цирконий образуют прочные фторидные комплексы (IgPi равны соответственно 4,3 1,3 6,1 2,8 8.8) устойчивость же комплексов названных элементов с хлорид-, бромид- и иодид-ионами невелика или они вообще не образуются. Из пере.ходных металлов такая же закономерность наблюдается, например, для железа и марганца устойчивость фторидных, хлоридных и бромидных комплексов этих металлов характеризуется соответственно числами 5,3 1,5 и —0,3 (железо) а также 5,5 и 0,96 (марганец). [c.256]


    Доказано, что в присутствии аммиака и этилендиамина двухзарядные ионы металлов группы железа имеют обычную кривую образования в соответствии с характеристическим координационным числом 6. Поэтому можно было бы ожидать, что они будут вести себя аналогичным образом в присутствии анионов, но этого не происходит или по крайней мере происходит редко. Так, многочисленные исследования показали, что синие растворы хлорида кобальта (II), вероятно, содержат те-трахлоро-комплекс при очень высоких концентрациях ионов хлора и что аналогичные комплексы присутствуют в соответствующих растворах бромида, йодида и роданида кобальта (II). Только в желто-красных растворах цианида кобальта (II) обнаружен гексациано-комплекс в соответствии с координационным числом 6. В желтых растворах цианида никеля имеется довольно устойчивый тетрациано-комплекс, но с увеличением избытка ионов цианида желтая окраска становится более интенсивной и принимает красноватый оттенок. Весьма возможно, что изменение цвета вызвано превращением тетрациано-иона в гексациано-ион . Если это справедливо, то можно сравнить систему цианидных комплексов никеля с изученной Н. Бьеррумом и Кнршнером системой роданидных комплексов золота (III). В этой системе тетрароданидо-ион сначала устойчив в довольно широком интервале концентраций, а затем присоединяет два дополнительных иона роданида при достаточно высоких концентрациях роданида. [c.66]

    Бромистоводороднач кислота. Бромид-ионы в кислом растворе дают сильно окрашенные в желтый, бурый и другие цвета комплексы с железом (III), медью (II) платиной (IV) и золотом (III). [c.129]

    Бромид-ион в кислом растворе образует более или менее сильно окрашенные (желтые, коричневые и т. д.) комплексы с железом(1 II), медью (II) [6], платиновыми металлами, золотом(1П), сурьмой(V), висмутом и oлoвoм(IV). Максимумы поглощения для большинства этих комплексов лежат в видимой [c.121]

    Так, в соответствии с работой [38в] в растворах, содержащих ферроцен и ферроциний-ион, последнему не требуется в каждом случае проходить расстояние между местом, где должен располагаться атом железа в активированном комплексе, и местом, где этот атом находится в обычном состоянии. Когда ферроциний-ион сталкивается в растворе с молекулой ферроцена, кажущаяся диффузия может осуществляться просто за счет обмена электроном, изменяющим степень окисления частиц, участвующих в обмене. После этого образовавшийся ферроциний-ион продолжает свое перемещение уже из того места, которое ранее занимала молекула ферроцена. Аналогичные предположения были сделаны для объяснения переноса ионов трииодида и трибромида в растворах, содержащих соответственно иодид- и бромид-ионы [ЗВг, ЗВд]. [c.205]

    Вводимые в реакцию железо и алюминий, соединяясь с бромом, образуют бромиды РеВгз и А1Вгз, которые, собственно, и проявляют каталитические свойства в данных реакциях. При бромировании бензола или его гомологов в присутствии такого катализатора последний поляризует молекулу брома и затем связывает отрицательный бромид-ион, образуя комплексный анион. Другой атом брома, получив положительный заряд, атакует ароматическое ядро углеводорода как электрофильный реагент. Он сначала образует комплекс с углеводородом, затем оттягивает пару электронов бензольного ядра и остается связанным с ним, а ноя водорода уходит, соединяясь с другим — отрицательным ионом брома из комплексного аниона. Таким образом, в данных условиях реакция протекает по типу электрофильного замещения. [c.196]

    В некоторых работах экстрагируют ионные ассоциаты перхлората и хелатов металлов. Так, можно экстрагировать п-бутиро-нитрилом перхлорат три(1,10-фенантролината) железа(П) и проводить затем спектрофотометрическое измерение экстракта 8. Этот же комплекс можно экстрагировать нитробензолом 9. Экстракция проходит количественно при pH = 1,5—10,0, максимум светопоглощения лежит при 516 нм, график линеен от 10- до 4-10- М перхлората. Определению не мешают хлорид, сульфат и фосфат (10 -кратный избыток каждого иона), но некоторые ионы мешают анализу. Был изучен хелат три-2,2 -дипиридила с железом (II) [10]. Ионный ассоциат хелата с перхлоратом экстрагируют нитробензолом, максимум светопоглощения — при 524 нм. Закон Бера выполняется для 0,4—4 ррт перхлората. Определению не мешают хлорид, бромид и сульфат. [c.406]

    Окислительно-восстановительные реакции, в которых принимают участие ионы железа(1И) и меди(П), обнаружены в нескольких растворителях. Полагают, что бромиды металлов класса (б), например HgBra, не будут подвергаться ионизации в DMSO — растворителе с высоким DNsb - , а поэтому в нем можно получить бромо-комплексы таких металлов. [c.209]

    Для повышения эффективности очистки солей при массовой кристаллизации из растворов используют комплексообразование [185]. Влияние маскирующих добавок на поведение микропрнмесей при направленной кристаллизации ВСЭ впервые было рассмотрено в работе [182]. Модельными системами послужили эвтектики на основе бромида калия и иодида цезия с примесями некоторых щелочных и тяжелых металлов. В качестве маскирующих агентов для меди (II) использовали лиганды, образующие с ней различные по размерам и координационной насыщенности водорастворимые комплексы (ОН , NH3, ЭДТА, цитрат, сахароза) и малорастворимые соединения (ОН , ДДТК) гидроксил-амин в условиях проведенного эксперимента не только восстанавливал Си до Сино и связывал ионы меди в растворимые комплексы. Железо (III) маскировали сахарозой, образующей с ним в щелочных средах комплексные ионы, а также осадителями-ОН и ДДТК. [c.106]


    Определению фтора не мешают хлорвды, бромиды, йодиды и циа-нвды двухкратный избыток кальция, стократный избыток ртути (П) марганца и магаия. Шестикратный избыток фосфат-иона несколько замедляет развитие окраски оксалат-, тартрат-, цитрат-ионы и комплексон Ш полностью подавляет реакцию. Алюминий, кобальт, медь, никель, железо, свинец и цинк препятствуют образованию окрашенного фторидного комплекса. [c.30]

    На аналогичном принципе основан метод, заключающийся в добавлении роданида двухвалентной ртути к раствору, содержащему хлорид, с образованием недиссоциирующего меркури-хлорида. Количество вытесненного роданид-иона определяют фотометрически после образования его красного комплекса с избытком ионов железа (III). С другой стороны, микроколичества хлорид-иона можно определять по степени ослабления окраски комплекса ртути с дифенилкарбазоном [9]. Вообще растворы хлоридов, бромидов и иодидов можно анализировать меркури-метрическим титрованием в присутствии дифенилкарбазида или дифенилкарбазона в качестве индикаторов. Конечную точку определяют по появлению избытка ионов ртути(II). [c.274]

    За последние годы предложены новые довольно высокочувствительные и селективные системы для определения микроколичеств серебра. Так, Дагнел и Уэст [27, 28] предложили для фотометрического определения серебра тройную систему, основанную на взаимодействии 1,10-фенантролина, бромпирогалло-вого красного и одновалентного серебра. Авторами установлено соотношение компонентов в возникающем комплексе [Ag(/оЛеп) г] 2 BPR, где ркеп — 1,10-фенантролин, ВРК—бром-пирогалловый красный. Максимум поглощения комплекса находится при 635 нм, коэффициент молярного погашения 51 ООО, область существования комплекса pH 3—10. Оптическая плотность подчиняется закону Бера в интервале концентраций серебра 0,02—0,2 мкг мл. При увеличении концентраций реагирующих веществ и при стоянии выпадает осадок комплексного соединения.. В присутствии комплексообразователей (комплексона III, перекиси водорода, фторидов) определению серебра не мешают стократные количества многих катионов, а также ацетаты, бромиды, карбонаты, хлориды, цитраты, фториды, нитраты, оксалаты, сульфаты, фосфаты. Сильно мешают цианиды и тиосульфаты. Из катионов не мешают ионы алюминия, бария, висмута, кальция, кадмия, трехвалентного церия, трехвалентных хрома и железа, двухвалентных кобальта, меди, ртути, магния, марган- [c.49]

    В косвенных методах бромиды определяют на основе цветной реакции ртути(П) с дифенилкарбазоном [18], а также используя окрашенный рода-нидный комплекс железа(1П) (ионы Вг замещают в Ag N роданидные ионы, которые реагируют с находящимися в растворе ионами Fe +) [19]. [c.127]


Смотреть страницы где упоминается термин Бромид-иона комплексы, с ионом железа: [c.342]    [c.364]    [c.158]    [c.517]    [c.40]    [c.279]    [c.183]   
Быстрые реакции в растворах (1966) -- [ c.58 ]




ПОИСК





Смотрите так же термины и статьи:

Бромид-ион бромидах

Бромид-иона комплексы, с ионом железа с ионом кадмия

Бромид-ионы

Бромиды

Железа комплексы

Железо, ионы



© 2025 chem21.info Реклама на сайте