Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мономеры циклизация

    Важнейшей отличительной особенностью полибутадиенов, образующихся при катионной полимеризации, является их низкая непредельность (30—70% от теоретической), наблюдаемая уже в начальной стадии процесса. Специфический характер вторичных реакций при катионной полимеризации объясняется тем, что активность внутренних двойных связен полимерной цепи по отношению к реакционному центру соизмерима с активностью мономера. На любой стадии процесса полимеризации протекает реакция внутримолекулярной циклизации, сопровождающаяся падением непре-дельности полимера [13]  [c.178]


    Такой процесс циклизации затрудняется с увеличением расстояния между функциональными группами, в результате чего образуются малоустойчивые циклы. Таким образом, способность бифункциональных мономеров к циклизации зависит от напряженности образующегося цикла, что, в свою очередь, определяется расстоянием между функциональными группами. Кроме того, на процесс поликонденсации и иа реакционную способность мономеров влияет также и расположение в них функциональных групп. Например, внутримолекулярная циклизация становится невозможной, если две функциональные группы находятся в пара-положении бензольного кольца. В то же время циклизация происходит, если эти группы находятся в орго-положении. Оказывают влияние и стерические факторы. Так, если в орго-положении присутствуют нереакционноспособный заместитель или мешающие друг другу в пространстве функциональные группы, то это сказывается и на процессе поликонденсации. Например, близость аминогрупп в орго-фенилендиамине способствует образованию циклических продуктов, что приводит [c.402]

    Соотношение между реакциями циклизации и линейной поликонденсации определяется в основном строением молекулы мономера и ее геометрией. [c.161]

    Соотношение констант скоростей реакций поликонденсации fep и циклизации fee определяет соотношение выходов продукта ноликонденсации и циклического мономера при постоянной температуре 7 г- [c.142]

    Строение макромолекул зависит от числа функциональных групп в молекулах веществ, участвующих в реакции поликон денсации. Если молекулы исходных веществ содержат по две функциональные группы, могут образовываться низкомолекулярные циклы или высокомолекулярные линейные цепи. Для предотвращения циклизации между обеими функциональными группами мономера должно быть не менее четырех углеродных атомов. С увеличением длины углеродной цепи, разделяющей функциональные [c.417]

    Синтез полиамидов с количеством атомов углерода между амидогруппами менее шести затрудняется вследствие циклизации мономеров. К тому же очень близкое расположение амидных групп в таком полимере настолько увеличивает силы межмолекулярного сцепления, что температура плавления полимера становится выше температуры его термического распада. [c.448]

    Синтез полимеров состоит из двух этапов получения мономеров и превращения их в полимеры. Основным источником мономеров является нефтехимический синтез, задача которого состоит в получении различных химических продуктов из нефти и газов (природных и попутных) синтетических моющих средств, растворителей, присадок, топлив, смазочны.х масел, аммиака, водорода и многих других. В промышленности нефтехимического синтеза используют в больших масштабах предельные, непредельные, ароматические и, в меньшей степени, нафтеновые углеводороды. При переработке нефтехимического сырья применяются процессы дегидрирования, изомеризации и циклизации, алкилирования, полимеризации и конденсации, а также галогенирования, нитрования, сульфирования, окисления и т. д. [c.384]


    В учебном пособии излагаются методы синтеза, модификации и исследования высокомолекулярных соединений. Впервые приводятся описания лабораторных работ на основе методов радиационного инициирования полимеризации, синтеза высокомолекулярных антиоксидантов с оценкой их эффективности и стабильности эластомеров, специфического галогенирования полимеров, циклизации макромолекул, определения молекулярных масс мономеров, олигомеров и полимеров путем измерения теплового эффекта конденсации а др. [c.2]

    Деполимеризация гетероцепных полимеров, состоящих из элементарных звеньев, способных к циклизации, приводит к образованию циклических мономеров по реакции, обратной реакции полимеризации циклов  [c.111]

    Таким образом, уменьшение концентрации исходного вещества способствует процессу циклизации. Экспериментальное изучение этой зависимости показывает, что заметный эффект разбавления наблюдается, начиная с концентрации мономера около 30—50%. [c.142]

    Соотношение констант скоростей реакций поликонденсации кр и циклизации кс определяет соотношение выходов продукта поликонденсации и циклического мономера при постоянной температуре 7  [c.159]

    Сначала образуется карбониевый ион за счет взаимодействия катализатора с двойной связью макромолекулы, а затем карбониевый ион выступает в роли акцептора электронов и взаимодействует со следующей двойной связью. В образующихся циклических полимерах наряду с участками макромолекулы, построенными из конденсированных шестичленных циклов, имеются участки линейного полиизопрена. С увеличением степени циклизации каучуков повышаются их твердость, хрупкость, уменьшается растворимость. Такие каучуки могут быть использованы в качестве наполнителей. Каучуки с полностью полицикличе-ской структурой могут быть получены ионной полимеризацией соответствующих мономеров (см. с. 324, 326). [c.255]

    Полимеризация соединений с напряженными циклами протекает с заметным тепловым эффектом. При полимеризации мономеров с трехчленными циклами решающее влияние на процесс оказывает изменение теплосодержания системы в случае мономеров с пятичленными и шестичленными циклами полимеризация затруднена, так как напряженность цикла мала, а вероятность циклизации их велика. [c.36]

    Поликонденсация часто осложняется побочными реакциями циклизации, в которые могут вступать как исходные мономеры, так и полимер. Это происходит, например, при взаимодействии фталевой или янтарной кислоты с диаминами  [c.64]

    Полиимиды характеризуют элементным составом, степенью имидизации и циклизации, содержанием свободных мономеров и аминогрупп. [c.202]

    При выборе исходных мономеров для процесса поликонденсации следует руководствоваться не только стремлением получить полимер, обладающий определенным сочетанием свойств, необходимо 72КЖС учитывать 1 ероят1ссть впутримолекулярпой конденсации мономеров, которая может привести к образованию устойчивых пизкомолекулярных циклов. С возникновением таких циклов исключается возможность дальнейшего протекания процесса поликонденсации, поэтому приходится применять исходные вещества, для которых не является характерной подобная циклизация. Например, а-аминокислоты непригодны для образования полимеров, так как при нагревании эти кислоты образуют устойчивые дикетопиперазины  [c.440]

    Образование полимеров с неорганическими главными цепями может сопровождаться реакциями циклизации. Если реакции поли кои де[ tea ции органических мономеров приводят, как правило, к образованию линейных, разветвленных или нростраиственных полимеров, то при синтезе полимеров с неоргапическидгн глав 1ыми цепями часто образуются циклические полимеры. [c.54]

    В полифункциональных фоторезистах, например использующих полученный фоторельеф для создания контактных площадок или последующей высокотемпературной диффузии, описано применение в качестве светочувствительных компонентов элементоргани-ческих арилазидов, их поглощение может лежать в области 250—400 нм. В качестве полимерной основы слоев могут быть использованы бутадиен-стирольный, хлоропреновый и натуральный каучуки циклокаучуки, полученные циклизацией полиизопрена, полибутадиена, полигексадиена в присутствии различных катализаторов полн-4-метилизопропенилкетон феноло- и крезоло-фор-мальдегидные смолы. В водорастворимых слоях используют смеси ПВП и ПВС сополимеры акриламида, диацетонакриламида и различных виниловых мономеров поли-4-винилфенол, полиакриламид, желатину, гуммиарабик, камеди. Для придания слоям по-выщенной термостойкости добавляют полиамидокислоты с последующей имидизацией или вводят, например, в циклокаучуки трифторметильные группы. Растворителями служат толуол, ксилол, цйклогексанои, их смеси часто используют такие сильные растворители как ДМАА, ДМФА, дихлорэтан для композиций, содержащих водорастворимые азиды, применяют различные спирты, водный метилэтилкетон. [c.134]


    ЛЕСТНИЧНЫЕ ПОЛИМЁРЫ (полимеры со сдвоенной цепью, двухтяжевые полимеры), линейные высокомол. соед., макромолекулы к-рых представляют собой протяженную систему конденсир. циклов (см. схему, а). В реальных условиях синтеза образуются обычно не лестничные, а блок-лестничные полимеры, к-рые схематично представлены на схеме (б). Л. п. характеризуются высокой тепло- и термостойкостью (нек-рые до 400-500 °С). Получают их внутримол. циклизацией линейных полимеров по реакционноспособным группам (—СООН, —С=К, С=0, —КНз и др.) поликондеисацией, реже полимеризацией мономеров. [c.587]

    При П. функц. группы мономеров, олигомеров и полимерных цепей расходуются не только на рост цепи, но и на побочные р-ции (р-ции с примесями или со специально введенными в процесс в-вами, декарбоксилирование карбоновых к-т и др.), что также лимитирует мол. массу образующегося полимера. При П. возможны также циклизация и обменные р-ции. Циклизация м.б. внутримолекулярной, когда кольца образуются при р-ции функц. групп одной молекулы, или межмолекулярной при взаимод. двух или более молекул одинаковой или разл. природы, напр.  [c.632]

    ПЦК проводят в одну или неск. (чаще две) стадий. Одностадийный процесс, применяемый для получения плавких и(или) р-римых полимеров, проводят в р-ре, расплаве или твердой фазе в присут. катализатора. Рост цепи и циклизация протекают практически одновременно, и промежут. полимер выделить пе удается. Два последних метода ПЦК осуществляют аналогично поликонденсации в расплаве и поликоиденсации в твердой фазе соответственно. ПЦК в р-ре проводят обычно нагреванием исходных в-в в токе инертного газа до 200-250 °С р-ритель-органический (напр., л<-крезол или нитробензол при синтезе полиамидов) или полифосфорная к-та, повыпиющая реакц. способность мономеров, катализирующая циклообразование и связывающая воду (паиб. частый низкомол. продукт р-ции). При использовании полифосфорной к-ты в р-цию можно вводить вместо аминов их более устойчивые гидрохлориды. Активными р-рителями могут служить также олеум, комплексы N,N-зaмeщeнныx амидов с SO3 и т. п. [c.40]

    Существ, влияние на значение точки гелеобразования оказывают те условия проведения р-ции, к-рые определяют степень циклизации, гл. обр. разбавление системы активным или неактивным р-рителем. В условиях получения С. п. путем полимеризации роль разбавителя системы играет собств. мономер. Дополнит, осложнение (к-рое пока никак не учитывают при расчете точки гелеобразования)-возможность фазового разделения в ходе формирования С. п. Немаловажную роль играет также наполнение системы компонентами (сажа, армирующие волокна, пигменты и т.п.), к-рые могут влиять на состав реакц. смеси вследствие хим. взаимод. с реагентами системы или избират. сорбции. [c.335]

    Получение значит, числа Т.п. стало возможным благодаря разработке новых методов я способов синтеза полимеров, напр, полициклоконденсацни, полвдиклотримеризацин, низкотемпературной поликондеисации и др. Т.п. получают указанными способами из термически стойких мономеров, а также термически нестабильных полимеров, напр, внутримол. циклизацией линейных полимеров или их спш-ванием. Последнюю стадию часто, особенно в случае получения неплавких и нерастворимых Т.п., проводят непосредственно в тех или иных материалах или изделиях. [c.546]

    В зависимости от механизма процессы циклизации разделяют на внутри- и межмолекулярные. Внутримолекулярная циклизация происходит при взаимодействии функциональных групп, принадлежащих одной и той же молекуле мономера. Примером внутримолскулярноГ циклизации бифункциональных соединеннй может служить побочная реакция, протекающая при синтезе сложных полиэфиров из оксикислот  [c.153]

    При этом методе эквимольную смесь исходных веществ в инертном растворителе быстро нагревают до 200-210 °С в токе инертного газа и выдерживают при этой температуре определенное время (3-10 ч). Рост полимерной цепи (образование полиамидокислоты) и внутримолекулярная циклизация протекают практически одновременно. Весьма успешным оказалось проведение одностадийной полициклизации в присутствии кислотных катализаторов [49, 181, 182, 211-214]. В этом случае удается или существенно уменьшить продолжительность реакции (до 1-3 ч), получая при этом весьма высокомолекулярные полимеры, или проводить процесс при более низких температурах (140-160°С). Карбоновые кислоты, например бензойная, оказались эффективными катализаторами и в случае синтеза высокомолекулярных полиимидов из мономеров пониженной реакционной способности, например в случае диангидрида 1,4,5,8-нафталинтетракарбо-новой кислоты [214]. Поскольку, как отмечалось выше, процесс образования полиимидов является равновесным, для получения высокомолекулярных полиимидов необходимо возможно более полно удалять из сферы реакции выделяющуюся при циклизации воду, что достигается повышением температуры реакции, проведением ее в токе инертного газа, связыванием воды химическими агентами и т.п. Следует отметить, что простота осуществления одностадийной полициклизации, ее хорошая воспроизводимость, возможность получения полиимидов с высокой молекулярной массой, практически не содержащих дефектных <э-карбокси-амидных звеньев, позволяют считать этот метод перспективным для синтеза самых разнообразных полиимидов [211]. [c.131]

    Подробно исследованы основные закономерности поликонденсации полигалогенароматических соединений с сульфидом натрия [1-7, 16, 32, 33] и обнаружены такие ее особенности, как возрастание реакционной способности функциональных групп на начальных этапах поликонденсации, возможность изменения строения элементарного звена полимера от соотношения исходных мономеров, изменение функциональности полигалогенароматических соединений за счет процессов внутримолекулярной циклизации, существенное влияние на свойства полимеров побочной реакции макроциклизации. [c.190]

    Больман с сотр. [220] изучили кинетику циклизации диен-диина (XVIII) в пиридине и нашли, что образование циклического мономера представляет собой реакцию первого порядка по отношению к диендиину. Эти данные подтверждают мнение указанных авторов (см. раздел Механизм реакции Глязера , стр. 257), считающих, что действительное образование связи С — С представляет собой стадию, определяющую скорость конденсации при применении Си +Упиридина. [c.335]

    При циклополиконденсации процесс протекает в две стадии. При этом получаются макромолекулы, содержащие карбо- или гетероциклические основные цепи [27—29]. Примером циклополиконденсации является получение лестничных полимеров. На первой стадии полимер получается из тетрафункциональных мономеров по соответствующей полиреакции, в которой принимают участие две из четырех функциональных групп. На второй стадии в результат конденсации двух оставшихся функциональных групп происходит циклизация, приводящая к образованию лестничных полимеров. На первой стадии можно использовать любую полиреакцию. [c.220]

    Сопоставив количества остаточных двойных связей в полимерах две и дивинилового эфира, авторы [386] пришли к заключению, что для данной концентрахщи мономера полимер ДВС содер-, жит больше циклических звеньев, чем полимер дивинилового эфира. Таким образом, радикалы , образующиеся из ДВС, более склонны к циклизаций, нежели радикалы дивинилового эфира. [c.154]


Смотреть страницы где упоминается термин Мономеры циклизация: [c.285]    [c.285]    [c.66]    [c.192]    [c.161]    [c.483]    [c.16]    [c.403]    [c.320]    [c.4]    [c.299]    [c.461]    [c.524]    [c.628]    [c.631]    [c.31]    [c.108]    [c.24]    [c.16]    [c.54]   
Равновесная поликонденсация (1968) -- [ c.29 ]




ПОИСК







© 2025 chem21.info Реклама на сайте