Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соединения также Ионы комплексные, Комплексы, Реакции комплексообразования

    Энтропийный фактор также играет большую роль в устойчивости комплексного соединения. С ростом энтропии протекает процесс комплексообразования, в котором положительный ион, взаимодействуя с отрицательными лигандами, образует комплекс с более низким зарядом. Например, в водном растворе может идти реакция [c.193]

    Методом абсорбционной спектрофотометрии могут количественно определяться, например, аквоионы различных неорганических солей (кобальта, никеля, меди, редкоземельных и других элементов), но чувствительность метода мала, так как молярный коэффициент погашения растворов аквокомплексов обычно не выше 10 . В таких случаях часто оказывается недостаточным получить раствор анализируемого образца. Если определяемое вещество поглощает очень слабо, то проводят реакцию, которая переводит его в соединение, обладающее достаточно сильным поглощением в каком-то участке спектра. Одной из важнейших таких реакций является реакция комплексообразования со специальными органическими или неорганическими реагентами. Комплексные или внутрикомплексные (хелатные) соединения ионов металлов или анионов с органическими лигандами обычно растворимы в воде и дают интенсивные полосы поглощения (е 10 ...10 ). Органические вещества, образующие такие комплексы с металлами, называют, в частности, металлохромными комплексом о метрическими индикаторами. Существуют также комплексы, образующие с катионами металлов интенсивно флуоресцирующие хелаты. [c.333]


    Известны также системы, в которых роль иона металла состоит в сортировке различных продуктов сложных, но обратимых реакций и в накоплении за счет комплексообразования продукта, образующего с ним наиболее стабильный полидентатный координационный комплекс, направляя тем самым реакцию на образование последнего (реакция термодинамического шаблона). Многие примеры включают образование оснований Шиффа из полифункциональных карбонильных соединений и аминов — реакций, которые могут приводить к набору нежелательных циклических или полимерных продуктов в отсутствие шаблона — иона металла. Эти системы часто образуют комплексные основания Шиффа, которые в отсутствие иона металла целиком гидролизу ются до исходных реагентов. Примером могут служить синтезы макроциклов (2.130) [589,590] и (2.131) [197] последний вклю- [c.428]

    Проведем термодинамическое рассмотрение совокупности равновесных реакций, приводящих к образованию комплексных соединений в окислительно-восстановительной системе, которая состоит из катионов металла в разных степенях окисления. Окислительно-восстано-вительная система помещена в водном растворе кислоты HjA. Учтем реакции замещения ацидолигандом молекул воды, координированных в аквакомплексах катионов в окисленном и восстановленном состояниях, полимеризацию (ассоциацию) и протолитические реакции, включающие гидролиз комплексов и протолитическую диссоциацию кислоты. Примем также, что комплексообразование протекает в растворах постоянной ионной силы. В соответствии с этими представлениями комп лексообразование окисленной формы (катион М " ) с s-продуктом протолитической диссоциации кислоты Н А и гидролиз выразим реакцией  [c.129]

    Полное отсутствие или ослабление типичных для компонентов реакций настолько характерно для комплексообразования, что о нем всегда говорят в тех случаях, когда типичные реакции отсутствуют вследствие образования особых химических соединений. При этом не обязательно, чтобы в каждом случае группа, характеризующая подобный комплекс, оставалась неизменной также и при химических превращениях, как это бывает с радикалами. Так, упомянутое в предыдущей главе свойство алюминия не осаждаться пз растворов, содержащих определенные органические вещества, например винную кислоту, объясняется образованием комплексных соединений солей алюминия. Предполагают, что ПОН алюминия образует с соответствующими органическими соединениями сложно построенные ионы. Однако при этом вовсе не обязательно, чтобы комплексные ионы, образующиеся из растворов сульфата, хлорида, нитрата и т. д., обладали одинаковым составом. Явление, заключающееся в том, что иопы металлов, например алюминия, вследствие образования комплексов не обнаруживают больше характерных для них реакций, называют маскировкой этих ионов. [c.385]


    Как указано выше, в титриметрии 11аряду с реакциями образования малорастворимых соединений применяются также реакции, приводящие к образованию комплексных соединений. Для того чтобы реакция комплексообразования могла быть использована в титриметрии, она должна протекать быстро, стехиомегрично и количественно. До недавнего времени метод комплексонометрическо-го титрования имел ограниченное применение в качестве комплексующих ионов применяли N-, и некоторые другие. Например, проводили титрование цианидов раствором соли серебра  [c.336]

    Термометрическое титрование применяется при изучении реакций комплексообразования, а также при определении ионов металлов путем измерения тепловых эффектов реакций образования комплексных соединений. В последнем случае обычно выделяют катионы металлов из раствора в виде нерастворимого соединения или используют реакции образования растворимых анионных комплексов. В некоторых случаях эти реакции протекают последовательно. Примером последнего может служить метод определения серебра по реакции ионов серебра с цианид-ионами. Образующийся вначале нерастворимый цианид серебра затем растворяется в избытке цианида калия, образуя ион дициапида серебра. [c.80]

    На первом этапе исследования необходимо убедиться в том, что в результате реакции комплексообразования образуется только одно комплексное соединение. Для этого изучают спектры поглощения растворов, содержащих ионы металла и реак-тив-комплексообразователь в различных соотношениях. Обычно готовят серию растворов, в которых — onst, а Сд непрерывно возрастает. Если кривые поглощения этих растворов остаются подобными, это свидетельствует об образовании в растворах преимущественно одного комплекса. Затем исследуют кривые поглощения растворов (с заданным и постоянным соотношением j С ) при различных pH среды. Эти кривые также должны быть подобны, если образуется только одно комплексное соединение МА . [c.159]

    При кондуктометрическом определении солей металлов, основанном на реакциях комплексообразования, используются различные лиганды. Например, в основу определения ионов алюминия положена реакция с тартрат-ионами. Образующееся комплексное соединение растворимо в воде. Комплексные ионы [А1 (С4Н4О6) отличаются высокой устойчивостью. Определение ионов алюминия возможно в присутствии ионов железа (П1). Для определения ионов алюминия используют также реакцию с лактат-ионами. Образующееся растворимое в воде комплексное соединение обладает большей прочностью, чем соответствующие комплексы железа (П), кальция и магния. Поэтому указанные ионы не мешают определению ионов алюминия. Ионы железа (П1) дают более прочные комплексы и мешают определению. С целью маскировки железа (П1) его восстанавливают аскор- [c.97]

    Данных о прочности комплексных соединений ионов-ката-лизаторов с теми или иными лигандами недостаточно для оценки маскирующего действия комплексообразователей, необходимы также сведения о каталитической активности образующихся комплексов. Для маскирования мешающих ионов представляют интерес лишь каталитически неактивные комплексы этих ионов. Поэтому ценность констант райновесия реакций комплексообразования, полученных кинетическим методом, несомненна. [c.151]

    Ни один из этих элементов в своих соединениях не достигает степени окисления, соответствующей номеру группы. Наиболее устойчивы степени окисления +2 и Ч-З, причем для никеля, за некоторыми исключениями (например, в K [NiFe], см. также опыт 1), наиболее типична степень окисления +2 (конфигурация d ) (опыт 1). Во многих соединениях кобальта он также имеет степень окисления 4-2 (d ) степень окисления 4-3 (d ) характерна главным образом для комплексных соединений кобальта, которые имеют сходство с комплексами хрома (1П). Соединения железа в степени окисления -j-2 (d ) сходны с соединениями цинка реакции иона железа(III) (d ) во многом похожи с реакциями ионов алюминия и хрома(III). Обладающие сильным окислительным действием ферраты (VI) (d ) РеОч напоминают хроматы (VI) и мaнгaнaты(VI) ферраты имеют тот же состав, что и сульфаты, и часто им изоморфны. Реакции соединений железа, кобальта и никеля в своем больщинстве определяются склонностью этих металлов к изменению степени окисления и их способностью к комплексообразованию. [c.635]

    Комплексообразование в водном растворе обычно понимается только как соединение катионов с анионами. Однако очевидно, что последнее есть частный случай координации вообще. При координации аниона к катиону из координационной сферы последнего вытесняется часть молекул гидратной воды или других групп, т. е. происходит реакция замещения. Нередко в ассоциате катион и анион могут быть разделены одним или даже двумя слоями молекул воды. Прочность связи катиона с анионом характеризуется величиной константы комплексообразования и зависит от ряда факторов, среди которых основную роль играют размеры и заряд катиона, определяющие его кислотность, а также донорные свойства аниона. Основность анионов может быть сопоставлена, исходя из их протонакцепторных свойств. Оксалат-, ацетат-, карбонат-, фосфат-ионы, которым соответствуют сравнительно плохо диссоциирующие кислоты, являются более сильными основаниями и образуют значительно более прочные комплексы с катионами, чем, например, хлорид-, нитрат и особенно перхлорат-ионы. При исследовании комплексообразования в растворах солей урана были использованы все обычные в этом случае методики спектрофотомет-рия, измерение потенциалов, исследование распределения как между водной и органической фазами, так и между раствором и ионообменными смолами. В настоящее время известно огромное число комплексных ионов урана, как анионных, так и катионных, многие из которых играют важную роль в химии урана [250]. [c.297]


    Комплексообразование как способ понижения концентрации свободных ионов металла в растворе находит в аналитической химии широкое применение, особенно при осуществлении реакций маскирования и демаскирования , при осаждении гидроокисей металлов, сульфидов и металлорганических комплексов, а также в количественных экстракционных методах. Свойства комплексов важны также для ионного обмена и хроматографии. Комплексные соединения используют и при окончательном определении элементов при помощи таких физических методов, как спектрофотометрия, потенциометрия, полярография, хронопотен-циометрия или кондуктометрия. Электроосаждение как метод отделения или выделения различных элементов тоже связано с использованием процесса комплексообразования последний может обеспечить присутствие ионов металлов в достаточно низких концентрациях (это необходимо для получения ровных и плотно прилегающих осадков), а также позволяет создать условия, гарантирующие выделение из растворов лишь определенных металлов. На рис. 1 показано влияние концентрации лиганда на относительный состав обычной смеси, которая может быть подвергнута электролизу. В последнее время комплексометрическое титрование, особенно с применением этилендиаминтетрауксусной кислоты (EDTA) и ее производных, позволило проводить прямое объемное определение ионов металлов в растворе. [c.107]


Смотреть страницы где упоминается термин Соединения также Ионы комплексные, Комплексы, Реакции комплексообразования: [c.15]    [c.352]    [c.167]    [c.157]    [c.129]    [c.223]   
Теории кислот и оснований (1949) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

ИОНЫ И ИОННЫЕ СОЕДИНЕНИЯ

Ионы комплексные

Ионы также Комплексные ионы

Ионы также Комплексные ионы комплексные

Комплексные комплексы

Комплексные реакции

Комплексообразование

Комплексообразование. Комплексные соединения

Комплексообразованне

Реакции комплексообразования

Соединение ионов

Соединения ионные

также Комплексы



© 2025 chem21.info Реклама на сайте