Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конфигурация макромолекулы

    Имеется много схем классификации полимеров, учитывающих их химическую структуру, форму макромолекул, способ получения и другие факторы. По пространственной конфигурации макромолекул полимеры делятся на линейные, разветвленные и пространственные трехмерные. [c.12]

    КОНФОРМАЦИИ И КОНФИГУРАЦИИ МАКРОМОЛЕКУЛ [c.77]

    В каких фазовых и физических состояниях существует целлюлоза Влияют ли химическое строение, молекулярная масса и конфигурация макромолекул на зависимость свойство -температура  [c.391]


    Вместе с тем для описания конфигурации макромолекулы введены понятия конфигурационное основное звено и конфигурационное повторяющееся звено. [c.79]

    Сравнение данных спектрального, элементного анализов, потенциометрического титрования исходного хитозана и образцов, подвергнутых деструкции в жестких условиях, свидетельствует о том, что окислению в первую очередь подвергаются аминогруппы. При деструкции хитозана в гетерогенной среде на ход реакций разрыва гликозидных связей и окисления отдельных функциональных групп оказывает влияние не только химическое строение, но и пространственная конфигурация макромолекул и их взаимное расположение, определяющее доступность отдельных участков цепи. [c.502]

    В качестве примера можно указать на то, что гибкую линейную форму имеют молекулы многих синтетических и природных полимеров, натурального и некоторых видов синтетического каучука, полиэтилена, полихлорвинила, найлона, капрона, энанта. Двухмерную конфигурацию макромолекул имеют крахмал, дивиниловые каучуки, некоторые полисахариды. Трехмерной структурой макромолекул обладает эбонит, фенолоформальдегидные смолы. [c.328]

    Как будет ясно из гл. 1, число возможных конфигураций макромолекулы со степенью полимеризации п + 1 может во много раз превосходить 2 ограничивая в определенной мере и определенным образом степени свободы каждого элемента ансамбля (т. е. [c.12]

    Таким образом, влияние конфигурации макромолекулы в растворе может быть выражено посредством возведения величины молекулярного веса в степень а, постоянную для данной системы полимер — растворитель и лежащую в пределах 0,5—0,8 в зависимости от взаимодействия макромолекул с растворителем  [c.291]

    Зависимость эластичности полимера от молекулярной массы, длины и конфигурации макромолекулы обусловлена различием в продольных и поперечных размерах макромолекулярных цепей. Длина макромолекул превышает их поперечные размеры в несколько тысяч раз. Это можно сравнить со стальной проволокой, имеющей, например, длину 5 ми толщину 0,5 мм. Несмотря на твердость стали проволока при таком соотношении длины и толщины окажется вполне гибкой. Кроме того, макромолекулы почти всегда изогнуты и часто имеют спиралеобразную конфигурацию. Такое состояние может быть уподоблено свиванию стальной проволоки в пружину. Подобно тому, как спиральная пружина более гибка, чем прямая проволока, так и гибкость длинной изогнутой макромолекулы значительно выше, чем прямой. Однако необходимо помнить, что различное влияние молекулярной массы можно сравнивать лишь в пределах одного класса полимера. [c.486]


    У полимеров в результате внутреннего вращения, как и у низкомолекулярных соединений, происходят конформационные превращения. При этом у полимеров могут изменяться конформации звеньев и конформации цепей (макромолекулярные конформации), т.е. конформационные превращения наблюдаются на разных уровнях. У полимеров также выделяют ближний и дальний конформационные порядки в пространственном расположении звеньев по цепи. Рассматривая ближний порядок, можно обнаружить одинаково расположенные в пространстве звенья. Расстояние между такими звеньями называют периодом идентичности. В отличие от конфигурации макромолекулы, конформация является переменной характеристикой изменение набора конформаций может привести к измене- [c.120]

    Термодинамическая гибкость макромолекул ПИБ (отношение невозмущенных размеров молекулы к размерам цепи свободного вращения), или фактор заторможенности внутреннего вращения, - 2.2. Z - средний радиус инерции ШИБ в блоке 7,5 0,5 нм и 7,7 0,5 нм в 0-растворителе [6], что свидетельствует об идентичности конфигураций макромолекул в блоке и 0-растворителе [7.  [c.214]

    По расстоянию между слоевыми линиями вычисляется период по оси текстуры. Поскольку по оси текстуры обычно ориентирована ось макромолекулы, то, зная величину периода, можно найти длину звена макромолекулы, а по нему - конфигурацию макромолекулы. [c.366]

    При переходе к полимерному состоянию количественное изменение - резкое возрастание в молекуле числа простых связей, вокруг которых возможно внутреннее вращение, - приводит к качественному скачку появлению нового свойства - гибкости цепей. Рассматривая внутреннее вращение у полимеров, можно отметить как сходство, так и отличие их от низкомолекулярных соединений. Как и у последних, у полимеров в результате только внутреннего вращения невозможно изменить конфигурацию макромолекулы, в том числе и стереохимическую. При изменении конформации исходная конфигурация сохраняется (например, цис-и /и/га /с-конфигурации, изотактическая и синдиотактическая конфигурации, конфигурации таких изомерных полисахаридов, как целлюлоза и амилоза крахмала, различающихся только конфигурацией гликозидной связи). [c.120]

    Пространственная конфигурация макромолекул рас- [c.161]

    Физическую конфигурацию системы так, как она понимается в статистической физике, не следует путать с химической конфигурацией макромолекул, [c.25]

    В полимерах при не слишком высоких температурах (ниже-мы уточним, при каких именно) метастабильные состояния являются не исключением, а правилом, причем не только вблизи точек фазовых переходов, но и вдали от них. Определенным внешним условиям может отвечать множество метаста-бильных состояний полимера определенного химического состава, различающихся как конфигурацией макромолекул, так и их конформациями. То, какое из метастабильных состояний реализуется, зависит от всей предыстории получения данного полимерного образца, начиная со способа синтеза полимера и кончая режимами его температурной обработки, механических воздействий и т. д. [c.27]

    Попробуем ограничиться при дальнейшем изложении минимумом параметров. Поскольку (см. гл. I) структура полимеров на любом уровне надмолекулярной организации закодирована в первичной структуре, или стереохимической конфигурации, макромолекул, удобно выбрать в качестве кодирующих параметр гибкости /о и конформационный параметр р (или <р>). Разумеется (см. гл. I), речь при этом идет о статистическом — вероятностном кодировании, которое не следует путать с дискретным генетическим кодированием, однозначно предопределяющим поведение макромолекул на всех стадиях образования организованных биологических структур. [c.67]

    Переходы простых релаксаторов могут вызвать только отдельные локальные, не связанные между собой изменения структуры полимерной системы. Изменение конформации цепи, разворачивание или сворачивание молекулярных клубов, а тем более изменение взаимного расположения (конфигурации) макромолекул, требует кооперативного перемещения отдельных участков макромолекулы. Такое перемещение возможно только, если разморожено движение на сегментальном уровне. Поэтому релаксационный переход, включающий или выключающий движение сегментов, является главным, его называют а-переходом и именно с ним связано структурное стеклование (при охлаждении) и размягчение (при нагревании), происходящие соответственно при температурах Т и Гр. [c.182]

    В качестве характеристики пространственных конфигураций макромолекулы и их размеров чаще всего используют средне-ква-дратичную величину расстояния между концами молекулярной цепи (/i2) /j (усреднение проводится по всем возможным конфигурациям цепи). [c.30]

    Конфигурация макромолекул - определенное пространственное расположение атомов и атомных групп в цепи. Оно не может быть изменено путем вращения (поворота) отдельных частей звена (мера) или макромолекулы без разрьша химических связей. [c.400]

    Спиральную конфигурацию макромолекулы принимают если в их состав входят гидро ксильные или другие группы которые могут вступать в отно сительно сильное внутримоле кулярное взаимодействие, в частности, путем образования водородных связей. Последнее [c.39]


    I. Достаточно протяженные линейные макромолекулы представляют собой упрощенную одномерную версию шредингеровского апериодического кристалла и являются носителями определенной информации. Физической или стереохимической характеристикой этой информации является конфигурация макромолекул. Существование такой нестираемой конфигурационной информации лежит в основе молекулярной кибернетики, частью которой можно считать молекулярную биологию [8, 15]. [c.11]

    В области малых концентраций, недостаточных для струк- турообразования, эта зависимость объясняется тем, что длинноцепочечные молекулы деформируются и ориентируются вдоль потока, оказывая меньшее сопротивление течению жидкости, а следовательно т) становится меньше. Поскольку изложенная выше теория исходит из наиболее вероятных конфигураций макромолекул в растворе без учета их деформации в потоке, естественно, что наименьшие отклонения от теории будут при низких градиентах скорости. Поэтому обычно измеряют величины (г —г о)1щ при различных градиентах скорости, а затем экстраполируют к нулевому градиенту. Эти измерения можно проводить в вискозиметре при разных давлениях (см. работу 44) или же примейить специальный вискозиметр, изображенный на рис. 126, в котором изменение градиента скорости достигается установлением различной высоты столба жидкости. Измеряя последовательно время протекания жидкости между метками 5 а 4, 4 п 3, 3 R 2, 2 ц I под действием силы тяжести, можно в одном опыте получить серию данных, отвечающих различным градиентам скорости. [c.292]

    Различные эффекты, влияющие на скорость и степень превращения функциональных групп в полимерах, могут тесно переплетаться друг с другом. Так, надмолекулярные эффекты могут быть связаны с конфигурационными, так как степень кристалличности определяется конфигурацией макромолекул (изо- или синдиотактическая, цис- или транб -формы). Поэтому часто можно наблюдать суммарное, совокупное проявление нескольких эффектов в конкретных химических реакциях. Подобным образом полимераналогичные превращения могут приводить к образованию новых продуктов, которые затем участвуют во внутри- или межмакромолеку-лярных превращениях полимеров. Приведем в этой связи несколько характерных примеров. [c.224]

    Белки и нуклеиновые кислоты своеобразной спиральной конфигурацией макромолекул резко отличаются от всех других типов высокамолеку лярных веществ. На рис. 63 дан фраг мент а-спирали белковой молекулы Ход спирали отмечен жирной линией пунктирными линиями — водородные связи. [c.184]

    В предыдущих главах при изображении молекул с помощью графов учитывалась лишь их топология, а пространственное расположение звеньев и групп полностью игнорировалось. Однако многие физико-химические свойства полимерных систем (см. разд. 1.1) зависят не только от конфигураций макромолекул, но и от их коп-формаций. Особенно важно учитывать взаимное расположение фрагментов молекулы в иространстве при ностроения теорип, принимающей во внимание реакции внутримолекулярной циклизации. Излагаемые далее результаты имеют общий характер, но для простоты они везде иллюстрируются на примере /-функциональной иоликон-денсацни. Это позволяет максимально упростить формулы прп со-храненнн всех основных особенностей используемых теоретических подходов. [c.208]

    Плоская конфигурация макромолекул обусловлена энергетическими причинами. Существует энергетический барьер, препятствующий свободному вращению атомов и групп атомов. Величина этого барьера непостоянна и меняется в зависимости от угла вращения т4ким образом, что потенциальная энергия молекулы минимальна в том случае, когда заместители наиболее удалены друг от друга (заторможены или находятся в тра с-положении). Наиболее благоприятным является расположение, когда каждый последующий атом цепи принимает заторможенную конформацию относительно предыдущего атома. Это соответствует полностью выпрямленной плоской конформации. [c.105]

    Переход из одной конформации в другую, так же как и для низкомолекулярных соединений, определяется соотношением потенциального барьера вращения и кинетической энергни молекулы. Существование взанмодействик ближнего и дальнего пО рядка накладывает настолько существенные ограничения иг вращение звеньев вокруг одинарных связей, что оно становитс заторможенным и вероятны лишь повороты на некоторый yгoJ ср, величина которого определяется химическим строением к конфигурацией макромолекулы. [c.40]

    Таким образом, конформации и размеры реальных макромолекул определяются комбинацией сил ближнего и дальнего порядков, интенсивностью внутреннего теплового движении, зависят от химического строения, молекулярной массы, конфигурации макромолекулы. Вполне естественно предположить, что в конденсированном состоянии, когда сильно возрастает роль дальнедейстБИЯ ввиду высокой кооператнвности системы, конформации макромолекул будут отличны от конформаций изолированной макромолекулы [c.48]

    Один и тот же полимер характеризуется набором кристаллических структур различной морфологии и различной дефектности. Причины подобной неоднородности кроются, в первую очередь, Б полидисперсности по молекулярной массе, регулярности, конфигурации макромолекул и т. д. Кроме того, структура поли.меров существенно изменяется при нероработке и зависит от ее условий. Следствием этого является существование интервала температур плавления кристаллов. [c.57]

    Рассмотренный метод позволяет не только определить химическое строение повторяющегося составного звсиа п коицевых групп, но также оценить конфигурацию макромолекулы. Напрнмер. присутствие в продуктах распада натурального каучука янтарной кислоты свидетелиствует о наличии структурны.х изомеров, в которых звенья соединены хвост к хвосту - [c.70]

    Для оценки конфигурации макромолекулы метод ИК спектроскопии имеет ограниченное применение, поскольку в большинстве случаев структура точек разветвления мало отличается от структуры групп в основной цепи, Однако необходимо отметить, что в полиэтилене количественно определяют степень разветвлеияосги по полосе I37S см с помощью компенсационного метода, заключающегося в сравненнн разветвленного и линейного полиэтилена. [c.75]

    Что такое надмолекулярная структура Зависит лн она от химического строения макромолекулы, молекулярной массы, молекулярно-массового распределеинй, конфигурации макромолекул н ее конформации Привести примеры надмолекулярных структур в аморфных и кристаллических полимерах. [c.106]

    Термомсханичсска кривая также очень чувствительна ) изменению молекулярной массы полимера и конфигураци макромолекул, С уменьшением молекулярной массы плат( высокоэластичности уменьшается, при определенном ее значе НИИ (М,I,) исчезает (см рис 4.1, б) и поведение материал  [c.230]

    В каких фазовых и физических состояниях существуют аморфные и кри-сталличсскне полимеры Влияег ли химическое строение, молекулярная масса и конфигурация макромолекулы на характер термомеханической кр1ГВ0Й  [c.279]

    III. 7), а также позволяет исследовать влияние измененш конфигурации макромолекул, их взаимодействия с различными веществами и другие изменения их состояния. В коллоидных растворах явления поглощения света осложняются явлениями светорассеяния и зависимостью поглощения от степени дисперсности частиц. [c.72]

    Рассмотренный метод позволяет не только определить химическое строение повторяющегося основного звена и концевых групп, но также оценить конфигурацию макромолекулы. Например, наличие в продуктах распада НК янтарной кислоты свидетельствует о наличии структурных изомеров, в которых звенья соединены по типу хвост к хвосту . При озонолизе участков макромолекул, построенных в порядке голова к голове и хвост к хвосту , образуются ацетонилаце-тон и янтарный альдегид. [c.43]

    Различие в конфигурации макромолекул оказывает влияние и на свойства полимера. Природный каучук, чмеющий в основном г/ыс-конфигурацию, более эластичный, чем гуттаперча, имеющая г/ лнс-конфигурацию. [c.15]

    Г ибкость - это способность цепных макромолекул принимать множество различных конформаций в результате внутреннего вращения вокруг множества простых связей. Гибкость характерна для полимеров, но может частично наблюдаться и у олигомеров. Конфигурацию макромолекулы, молекулярную массу и гибкость объединяют общим понятием молекулярных характеристик. [c.121]

    Все реакции полисахаридов древесины подразделяют на две группы полимераналогичные превращения и макромолекулярные реакции (см. главу 4). В результате полимераналогичных превращений (реакций мономерных звеньев) изменяется химический состав полисахарида, но не изменяются степень полимеризации и пространственная конфигурация макромолекул. Реакции мономерньпс звеньев, в свою очередь, подразделяют на два вида реакции функциональных групп реакции внутримолекулярных (внутризвенных) превращений. [c.279]

    Для химических превращений полисахаридов древесины большее значение имеет вторая группа реакций - макромолекулярные реакции. В результате этих реакций, т.е. реакций макромолекул в целом, изменяется степень полимеризации полисахарида (чаще всего уменьшается), а также может измениться пространственная конфигурация макромолекул. Химический состав не изменяется. Макромолекулярные реакции подраз- [c.279]

    Иными словами, конфигурация макромолекулы складывается из конфигураций ее частей, начиная с конфигурации элементарного повторяющегося звена (в гомополимере) или звеньев в сополимерах. Следующей важной характеристикой является ближний конфигурационный порядок, т. е. конфигурация присоединения соседних звеньев. С ближним конфигурационным порядком связана первичная запись конфигурационной информации, хотя в случае диенов эта запись произведе- [c.36]

    Hoe hst Gelanese") работают над увеличением прочности эла-стомерного волокна и снижением усадки (волокно DSP). Волокна с повышенными значениями прочности и модуля, с низкой усадкой получают путем изменения расположения и конфигурации макромолекул, а также морфологической структуры волокна. [c.307]

    Целлюлоза— классический пример полимера, макромолекулы которого имеют линейное строение и который характеризуется повышенной скелетной жесткостью Конфигурация макромолекулы целлюлозы дает возможность реализации внутри- и межмолекулярных взаимодействий Современная точка зрения на структуру целлюлозы имеет в своей основе теорию аморфнокристаллического ее состояния и основывается на данных электронографических, рентгенографических и других исследований [1, 3, 4-8] Как и все гидрофильш,1е линейные полимеры, целлюлоза обладет склонностью к образованию первичных (элементарных) фибрилл, в которых группы параллельно расположенных цепей макромолекул связаны между собой множественными водородными связями Первичная фибрилла представляет собой наименьшее надмолекулярное звено целлюлозы Обшепринятой в настоящее время является модель первичной фибриллы Денниса и Престона (рис 1 2) [6, 8-11] [c.10]


Смотреть страницы где упоминается термин Конфигурация макромолекулы: [c.334]    [c.28]    [c.240]   
Физика полимеров (1990) -- [ c.36 ]




ПОИСК







© 2024 chem21.info Реклама на сайте