Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициенты ректификационных колонн

    Нельсон обобщил опыт работы ректификационных колонн и для определения коэффициента С предложил график (рис. 127), учитывающий и конструкцию тарелок. Обследования ректификационных колонн на действующих атмосферно-вакуумных трубчатых установках, проведенные ГрозНИИ, показали, что расчет допустимой скорости паров с использованием графика Нельсона для определения коэффициента С хорошо согласуется с практикой. Скорость паров в атмосферных колоннах установок АВТ составляет 0,46—0,84 м/сек, а в вакуумных 2,5—3,5 м/сек при расстоянии между тарелками [c.237]


    Доля теплообменного оборудования в химических производствах достаточно высокая. Например, каждая из ректификационных колонн, как минимум, снабжена двумя теплообменниками конденсатором и кипятильником. Их количество может быть намного больше, если на стадии проектирования принимаются меры по рациональному использованию энергии. Это многоступенчатая конденсация пара, промежуточные холодильники и т. д. От эффективной работы теплообменной аппаратуры существенно зависит степень использования тепловой энергии. Важно не только точно рассчитать теплообменник, но и обеспечить нормальные условия эксплуатации с высокими коэффициентами теплопередачи. Несмотря на простоту конструкции и достаточную изученность процесса теплопереноса, эксплуатация теплообменной аппаратуры в промышленных условиях довольно напряженная. Трудность состоит в обеспечении высоких коэффициентов теплопередачи, что часто покрывается большими запасами по поверхности тепло- [c.377]

    Саудерс и Браун установили зависимость коэффициента К от расстояния между тарелками и поверхностного натяжения жидкости. Установлено, что ректификационные колонны работают удовлетворительно и при нагрузках, превышающих 20—30% от допустимых по Саудерсу — Брауну. Не случайно, что на установках АВТ, построенных ранее, колонна выдерживает перегрузку от 25 до 50% от проектной производительности. [c.59]

    Проведенные на современных установках АВТ мероприятий позволили значительно увеличить их мощность по сравнению с проектной. Благодаря использованию вторичных энергоисточникоВ горячих потоков — нефтепродуктов и дымовых газов — значитель но повысилась температура предварительного подогрева нефтяного сырья для нужд установки и предприятия можно производить больше водяного пара повысился коэффициент энергоиспользования. Применение промежуточных циркуляционных орошений в колоннах способствовало оптимизации теплового режима ректификационных колонн и урегулированию температурного градиента отдельных секций колонн. Внедрение новых методов расчетов колонн, систем орошений, использование новых, более эффективных клапанных тарелок — все это обеспечило улучшение технологических показателей колонн (уменьшение температурного налегания фракции, улучшение фракционного состава дистиллятов и др.). [c.231]

    Коэффициент К в уравнении (1.110) можно найти также по графику Нельсона, построенному на основании обследования промышленных ректификационных колонн с тарелками разного типа (см. рис. 1.24). При выборе кривой для определения коэффициента К можно пользоваться следующими данными для колонн, работающих при атмосферном и повышенном давлениях  [c.85]


    Главные ректификационные колонны промышленных установок каталитического крекинга имеют высоту 20—26 м и диаметр от 3 до 6 л в зависимости от пропускной способности установки, глубины разложения сырья, коэффициента рециркуляции газойля и 1 д. [c.177]

    Блок-схема основных операций ТД ректификационной колонны с ситчатыми тарелками показана на рис. 4.7. Для диагностики отказа, проявляющегося в снижении производительности колонны, необходимо проверить приборы, собрать данные о перепаде давления АР в зависимости от скорости, сравнить наблюдаемые и номинальные значения АР, установить потенциальное местонахождение неполадки. При отказе в виде снижения к.п.д. колонны собирают данные о концентрации и температуре, составляют материальный и тепловой балансы, рассчитывают коэффициенты массо- и теплопередачи и к.п.д., сравнивают с нормальными значениями параметров. [c.122]

    При расчете ректификационных колонн с учетом эффективности тарелок в терминах КПД Мерфри матрица коэффициентов снстемы уравнений материального баланса имеет ненулевые элементы выше или ниже главной диагонали (в зависимости от направления нумерации тарелок), т. е. треугольную форму [60]. [c.342]

    Расчет необогреваемых коксовых камер на установках замедленного коксования [25]. Этот процесс проводят при 475—480°С и 0,29—0,49 МПа. Исходное сырье нагревают в трубчатой печи до 490—510°С. При движении сырья от печи до камеры температура его снижается на 10—15 °С. Объемная скорость подачи сырья в коксовые камеры для гудрона 0,12—0,13 ч , а для крекинг-остатков 0,08—0,10 ч-. Коэффициент рециркуляции 0,2—0,6. Пары продуктов коксования движутся в камере со скоростью не более 0,15—0,20 м/с. Температура продуктов на выходе из камеры на 30—60 °С ниже, чем поступающего сырья [25]. Обычно коксовые камеры рассчитывают на цикл работы 48 ч, из которых 24 ч в камере идет реакция, остальное тратится на выгрузку кокса. С целью предотвращения попадания битуминозной иены в ректификационную колонну камеру заполняют коксом лишь на 70— 90%. Более точно высоту вспученной массы можно подсчитать, определив коэффициент вспучивания по эмпирическим формулам 26] [c.131]

    При расчете комплекса ректификационных колонн, как и при расчете составов по высоте отдельных колонн, необходимо определять составы связующих потоков. Их расчет основан на том, что на каждой итерации при известных константах фазового равновесия концентрации компонента в выходных потоках связаны с концентрациями во входных потоках линейными соотношениями. Таким образом, для каждого из потоков колонны, за исключением внешних, можно записать линейное уравнение, связывающее искомые концентрации с концентрациями их во внешних питаниях. Коэффициенты этой системы уравнений определяются в результате расчета каждой колонны комплекс , при соответствующих граничных условиях, а составы — последующим решением системы уравнений [40]. При расчете составов потоков используется рассмотренный выше метод определения составов и метод коррекции. [c.133]

    Если коэффициент разделения для некоторого ключевого компонента к в ректификационной колонне задан, а коэффициент о ,- не изменяется, то коэффициент разделения для компонента г является постоянной величиной и описывается выражением [c.84]

    Расчет коэффициентов эффективности для ячеечной модели движения потока жидкости на тарелке ректификационной колонны [c.243]

    При решении ряда практических задач можно допустить, что мольные потоки пара и жидкости по высоте секций колонны постоянны, тем самый исключить рассмотрение теплового баланса, а также принять постоянство коэффициентов относительной летучести компонентов. Дальнейшим упрощением является принятие концепции теоретической тарелки, т. е. пар, покидающий тарелку, находится в равновесии с жидкостью. Исходя из принятых допущений математическое описание ректификационной колонны пред- [c.347]

    При движении жидкости но тарелке в ректификационной колонне ее концентрация х изменяется от некоторого значения Хо на входе до значения Ху на выходе. Изменение состава жидкости происходит за счет взаимодействия с паровым потоком, поступающим на тарелку в количестве V, и эффекта продольного перемешивания, учитываемого коэффициентом турбулентной диффузии Ве (рис. 59). Если положить, что локальный к.п.д. Мерфри — [c.382]

    На рис. 95 приводится графический расчет числа теоретических тарелок в экстрактивно-ректификационной колонне для разделения бутан-бутиленовых смесей с использованием водного ацетона в качестве разделяющего агента [248]. Для построения кривой равновесия принято усредненное постоянное значение коэффициента относительной летучести ар=1,36. [c.248]

    Принятое для расчета флегмовое число / = 5,13, что отвечает коэффициенту избытка флегмы а=/ // , п = 1Л6. Путем построения ступенек легко найти, что эффективность экстрактивно-ректификационной колонны должна составлять 30 теоретических тарелок, а исходная смесь должна подаваться между 15 и 16 тарелками. [c.248]


    Расчет схемы с применением программы РСС сводится к следующему. Предполагается, что каждый вычислительный блок, представленный определенной алгол-процедурой, обращается к массивам Е, А, КО, где Е и А — массивы входных и выходных переменных блока и КО — массив коэффициентов блока (табл. 10). Обычно входные и выходные переменные блока — это параметры входных и выходных потоков (расход, концентрации, температура и т. д.), а коэффициенты — технологические параметры (параметры блоков), характеризующие данный блок (длина слоя катализатора в реакторе, число тарелок в ректификационной колонне, поверхность теплообмена в теплообменном аппарате и т. д.), и различные физические и математические константы, которые участвуют в расчете блока. В массивах Е, А, КО информация, относящаяся к некоторому определенному блоку, хранится только во время его расчета. Для длительного хранения параметров потоков и блоков в программе предусмотрены массивы X и КОР (см. табл. 10). [c.270]

    По рекомендации авторов [5, 6, 8, 9] коэффициент К определяется в зависимости от расстояния между тарелками, типа тарелки, нагрузки по жидкости и некоторых условий работы колонны. На рис. 21 приведен график для определения коэффициента К в уравнениях (61) и (62), полученный на основе обобщения работы ректификационных колонн. [c.56]

    Влияние величины коэффициента относительной летучести на необходимое число теоретических тарелок в ректификационной колонне при различной четкости разделения иллюстрируется кривыми, приведенными на рис. У-1. [c.183]

    Изменение температуры системы соответственно обусловливает изменение давления. Поэтому изменение температурного режима в ректификационной колонне при ведении процесса с разделяющим агентом влияет на величину коэффициента относительной летучести в том же направлении, как и изменение давления. [c.169]

    В настоящее время отсутствует надежный метод расчета коэффициента полезного действия тарелок. Поэтому приходится пользоваться практическими данными, полученнымп при обследовании работы ректификационных колонн. [c.236]

    Сущность экстракционной перегонки заключается в том, что весьма близкая к единице величина коэффициента относительной летучести компонентов системы, характеризующая в данном случае особую трудность их разделения, претерпевает, в присутствии надлежащим образом подобранного растворителя, серьезное изменение, заметным образом отклоняясь от единицы и тем самым, создавая сравнительно более благоприятные условия для разделения исходной системы на ее практически чистые составляющие. Так, например, на установках каталитической дегидрогенизации н-бутана с целью получения бутенов, фракция продуктов реакции в основном состоит из неразложившегося н-бутана, бутена-1 и высоко- и низкокипящего изомеров бутена-2. При этом отделение бутенов-2, особенно же низкокипящего их изомера, от н-бутана методами обычной ректификации практически неосуществимо. Если же в колонну ввести специальный высококипящий растворитель, например, фурфурол, фенол или ацетон, то разделение этих же компонентов оказывается вполне возможным. Объясняется это тем, что в обычных условиях летучесть н-бутана (4ип = — 0,5° С), отнесенная к летучести низкокипящего изомера бутена-2 (4ип = 0,9° С) составляет К = 1,0125. Если же рассмотреть коэффициент относительной летучести этих же веществ в присутствии растворителя—фурфурола, то оказывается, что он доходит до АГ= 1,7, т. е. значительно возрастает и тем самым значительно облегчается разделение этих веществ в ректификационной колонне. Разница в летучестях н-бутана и бутенов в условиях экстракционной перегонки объясняется различной растворимостью алканоз и алкенов в растворителях типа фурфурола, фенола или ацетона. [c.154]

    Во время второй мировой войны толуол, пригодргый для нитрования, получался таким способом из нефтяных концентратов. На заводе Панаме рикен Рифайнинг Компани в Тексас Сити колонна для экстракционной перегонки имела диаметр 2,1 м и содержала 65 тарелок, а колонна для отделения растворителя имела диаметр 1,1 м и содержала 30 тарелок. Из исходного продукта, содержащего 63,4 % мол. толуола, получался толуол чистотой 99,4 /о мол. В табл. 9 приведена типичная характеристика работы колонны для экстракционной перегонки на этом заводе. При помощи этих данных можно рассчитать, что отношение объемов растворителя и исходного продукта составляет 2,55 при внешнем коэффициенте орошения ректификационной колонны 2,75. [c.106]

    Одна из сложностей, с которой зстречаются проектировщики, заключается в том, что в литерат фе отсутствуют обобщенные закономерности для расчета кин(тнческих коэффициентов процесса ректификации. В наибольшей степени это относится к колоннам диаметром более 800 мм, с насадками и тарелками, широко применяемыми в химических роизводствах. Большинство рекомендаций сводится к испод ьзованию для расчетов ректификационных колонн кинетические зависимостей, полученных при исследовании абсорбционных процессов. В приведенных в данной главе примерах были ипользованы в основном эти рекомендации. [c.125]

    Обычно коэффициент избытка флегмы, при котором достигается оптимальное флегмовое число, не превышает 1,3 [2]. Предложено [3] находить Я по минимальному значению N Я - - 1), полагая, что это произведенпе пропорционально объему ректификационной колонны (/V — число ступеней изменения концентрации, или теоретических тарелок). Определим К рекомендуемым способом. [c.126]

    Пробегом установки называется количество дней, в течение которых установка может успешно работать без остановки. Во время работы установки происходит отложение кокса в трубах печи, загрязнение коксом и катализатором тарелок, низа колонны и теплообменников, а также абразивный износ транспортных линий, стояков и защитных втулок, регулирующих и запорных шиберов, регулирующих задвижек, распределительных устройств реактора и регенератора, отложение кокса и окалины на решетках распределительного устройства, коробление облицовочных листов транспортных линий, стояков и регенер. тора. Кокс, отложившийся на внутренней поверхности труб печи, вследствие уменьшения коэффициента теплоотдачи приводит к ухудшению нагрева сырья. Загрязнение теллообмении. ов привод ит к снижению предварительного подогрева сырья и, следовательно, производительности установки. При загрязнении ректификационной колон гы вследствие попадания Катализатора и аылн в полость цилиндров к клапанов насоса нарушается четкость ректификации и нормальная работа шламовых насосов. [c.164]

    Практика оптимального про ктирования ХТС показывает, что использование технологических критериев эффективности позволяет исключить из дальнейшего рассмотрения существенную часть альтернативных вариантов проектируемой ХТС как весьма далеких от оптимальных. Обычно технологические критерии эффективности дают возможность найти оптимальный вариант на самых низших иерархических уровнях ХТС тем самым значительно сокращается число вариантов, которые участвуют в принятии решений на более высоких уровнях иерархии. Та , например, при выборе типа аппаратурного оформления ступени контакта для мас-сообменного аппарата ХТС при прочих равных условиях отдают предпочтение типу ступени контакта, с большим коэффициентом массопередачи, который в этом случае представляет собой технологический критерий эффективности элемента ХТС. При заданном числе теоретических ступеней контакта в ректификационной колонне место ввода питания выбирают таким образом, чтобы оно обеспечивало наилучшее качество продуктов разделения, которое здесь также играет роль технологического критерия эффективности. [c.31]

    Кинетика массопередачи и гидродинамика потоков. Массопе-редача в многокомпонентных системах является одним из вопросов, которому уделяется, особенно в последнее десятилетие, огромное внимание [61—63]. И тем не менее до сих пор отсутствуют алгоритмы, позволившие бы перейти к точному расчету ректификационных колонн на основе кинетических представлений. При математическом описании межфазного массообмена движущую силу процесса принято выражать чзрэз разность концентраций, а кинетику — через коэффициент массопередачи [64]. [c.343]

    Расчет насадочных ректификационных колонн. Для насадочных колонн при скоростях паров ниже скоростей, соответствующих подвисанию жидкости, высоту единицы нерено.са определяют по формулам, приведенным на стр. 612. Наибольшее значение коэффициента массопередачи достигается при оптимальной скорости паров, которая соответствует началу подвисания и может быть определена по уравнению (17-16). Оптимальная скорость изменяется по высоте колонны в соответствии с изменением массовых скоростей пара и жидкости и их плотности. [c.693]

    Подпрограмма INPUT обеспечивает ввод всей необходимой информации по стандартному формату. Сюда входят не только число и название компонентов, но и ряд их физических свойств, таких, как критические параметры, ацентрический фактор, константы, характеризующие температурную зависимость давления паров чистых компонентов, мольные объемы жидкости. Далее, в соответствии с уравнением для расчета коэффициентов активности должны быть введены параметры, характеризующие бинарное взаимодействие в жидкой фазе. Для неконденсирующихся компонентов исходными данными являются также константы Генри и парциальные мольные объемы. При расчете данной смеси к подпрограмме INPUT обращаются только однажды, независимо от того, при каких условиях будет производиться расчет. Следует подчеркнуть, однако, что для каждого конкретного случая такие независимые переменные, как давление, температура и составы, вводятся основной программой, а не подпрограммой ввода. Подпрограмма ввода оформлена отдельным блоком, исходя из того, что необходимость в ней отпадает в том случае, если предлагаемая методика расчета равновесия будет использоваться в готовых программах расчета ректификационных колонн, в которых уже предусмотрен ввод всех необходимых данных. [c.58]

    Эффективность ректификационных колонн, необходимая для получения продуктов заданной чистоты, зависит от коэффициента относительной летучести (а) разделяемых компонентов. Углеводородные системы в первом ириближеши можно рассматривать как идеальные, подчиняющиеся закону Рауля. В этом случае  [c.66]


Смотреть страницы где упоминается термин Коэффициенты ректификационных колонн: [c.105]    [c.14]    [c.176]    [c.176]    [c.15]    [c.140]    [c.204]    [c.186]    [c.186]    [c.381]    [c.414]    [c.150]    [c.148]    [c.413]    [c.260]    [c.288]    [c.162]   
Промышленный синтез ароматических нитросоединений и аминов (1954) -- [ c.103 , c.105 ]

Промышленный синтез ароматических нитросоединений и аминов (1964) -- [ c.103 , c.105 ]




ПОИСК





Смотрите так же термины и статьи:

Колонна ректификационная

Коэффициенты колонны

Коэффициенты массоотдачи в жидкой и паровой фазе ректификационной колонны

Полезного действия коэффициент тарелки ректификационной колонн

Расчет коэффициентов эффективности для ячеечной модели движения потока жидкости на тарелке ректификационной колонны

Расчет ректификационных колонн на основе коэффициентов массопередачи

Ректификационная колонна колонна

Ректификационные колонны коэффициент полезного действи



© 2025 chem21.info Реклама на сайте