Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энтропия обратимого

    Соотношение (137) позволяет по предэкспоненциальным факторам прямой и обратной реакций вычислить изменение энтропии обратимой реакции и, наоборот по величине А5 определить отношение факторов. Если известен один из них, то можно вычислить и другой. Соотношение (137) является верным, если уравнение Аррениуса вьшолняется, т. е. энергия активации не зависит от темлературы. Полагая, что фактор А не зависит от темшературы (что неверно), можно выразить его при помощи уравнения  [c.207]


    Термодинамические методы расчета равновесий радикальных реакций требуют знания свободных энергий реагирующих радикалов и молекул или теплового эффекта и изменения энтропии обратимой реакции. Трудность заключается в 546 [c.246]

    Пр и м е р 59. Найти изменение энтропии обратимого изотермического сжатия 1) 1 моля кислорода от =0,001 до рг = 0,01 атж, 2) 1 моля метана от р,= =0,1 до рг= атм. В обоих случаях газы считать идеальными. [c.98]

    Таким образом, изменение энтропии в системе является критерием обратимости протекающего процесса. В основном все процессы в природе протекают необратимо, т. е. с возникновением энтропии. Обратимые процессы являются предельным случаем реальных процессов, если представить их как протекающие бесконечно медленно. Несмотря на это, как мы увидим в дальнейшем, имеется возможность исследования необратимых процессов методами равновесной термодинамики, если мысленно представить необратимый процесс как последовательность обратимых процессов. [c.235]

    Сравнение термодинамически оптимального каскада с адиабатической колонной и идеальным каскадом при указанных выше параметрах процесса (а=1,44, N = 23) показывает, что энтропия разделения для термодинамически оптимального каскада составляет 583, для идеального—616, а в адиабатической колонне 662 кдж/(град 100 моль исходной смеси). Для сравнения энтропия обратимого разделения равна 302,5, а энтропия разделения в бесконечной адиабатической колонне 536 кдж/(град-100 моль исходной смеси). Общий термодинамический к. п. д. адиабатической колонны [c.211]

    Изменение энтропии обратимого процесса можно получить, интегрируя соотношение (4.17)  [c.52]

    Изменение свободной энергии при постоянном давлении и энтропии обратимых реакций вычисляют по термодинамическим данным для отдельных вешеств. [c.32]

    Таким образом, из выражения (И,52) видно, что алгебраическая сумма переходит в интеграл, взятый по замкнутому контуру. Поскольку этот интеграл от некоторой функции равняется нулю, то подынтегральное выражение представляет собой полный дифференциал этой функции, а сама функция — функцию состояния системы. Эта функция получила название энтропия . Следовательно, для всех обратимых процессов можно записать  [c.74]

    Понятие энтропия с первого взгляда трудно усвоить. Попытаемся сделать его более конкретным. Прежде всего, энтропия является функцией состояния. Аналитическое выражение этого положения дается в уравнении (П.54). Следовательно,.изменение этой функции зависит не от пути перехода, а только от значения энтропии начального и конечного состояния при обратимом процессе  [c.75]


    Адсорбат оказывает заметное влияние на поверхность адсорбента неоднородность и дефекты поверхности обратимо перераспределяются, в частности под влиянием адсорбированных молекул изменяется энергия центров адсорбции. С другой стороны, под воздействием адсорбента меняются энтропия и внутренняя энергия адсорбированных молекул. Известно также, что несколько первых слоев кристаллической поверхности твердого тела имеют искаженную структуру. В присутствии адсорбата степень нарушения структуры поверхностного слоя меняется, причем этот процесс не обязательно сопровождается массовым переносом атомов твердого тела. [c.183]

    Если полагать, что процесс формирования граничных смазочных слоев происходит через промежуточную стадию образования переходного комплекса, то последнему, по мнению Камерона, должно соответствовать вполне определенное изменение энергии Гиббса (АС ) и энтропии активации (А5). Тогда состояние поверхностных слоев с учетом законов термодинамики обратимых процессов можно выразить уравнением [c.244]

    Одной из основных термодинамических функций, которая может характеризовать трение и изнашивание в системе при таком подходе, является энтропия. Считается, что в процессах трения и изнашивания энтропия системы растет и стремится к максимуму [264, 268]. Следует отметить, что общее изменение энтропии системы складывается из изменения энтропии вследствие обмена теплом и веществом с внешней средой и изменения энтропии в результате процессов, протекающих внутри самой системы. При этом поступающая энтропия может быть (в зависимости от характера процесса) положительной или отрицательной, а также равной нулю, в то время как энтропия процессов, протекающих внутри самой системы, должна быть равна нулю для обратимых (или равновесных) процессов и положительна для необратимых превращений, к которым относятся трение и изнашивание. [c.250]

    Максимальная работа обратимого изотермического процесса определяется только начальным и конечным состояниями системы и не зависит от пути превращения. Поэтому, так же как и другие обладающие этим свойством термодинамические величины, характеризующие состояние (например, изменение внутренней энергии или энтропии), ее можно представить в виде разности [c.88]

    Связь между своеобразной структурой эластомеров и их способностью к необычайно большим обратимым деформациям очевидна. Качественно она может быть описана следующим образом. Под действием внешних сил, например, растяжения, молекулярные цепи могут разворачиваться, принимая менее свернутые конфигурации, частично ориентированные в направлении оси растяжения. Стремление молекулярных цепей перестроиться таким образом, чтобы принять свои первоначальные конфигурации, обусловленное уменьшением энтропии вытянутых, частично упорядоченных состояний цепи, приводит к возникновению упругой возвращающей силы. [c.18]

    Как уже указывалось выше, макромолекулы в конденсированном аморфном состоянии имеют клубкообразную конфигурацию, характеризующуюся тем, что расстояние между двумя любыми точками цепи, разделенными не слишком малым числом атомов, много меньше контурной длины отрезка цепи между этими точками. Если к таким точкам приложить деформирующее усилие, то отрезок цепи между ними сможет растянуться до размеров, намного превышающих исходное расстояние между рассматриваемыми точками. Так как растяжение цепи сопровождается уменьшением энтропии, то после снятия нагрузки цепь вернется в свое исходное клубкообразное состояние. Этот же механизм действует и в том случае, если имеется совокупность цепей, связанных в сетку. Именно этим обусловлена способность эластомеров к большим обратимым деформациям. [c.48]

    I. Жидкая вода нагревается от —5 до О С (1), затем обратимо затвердевает (2), и, наконец, лед охлаждается до —5 °С (3). Изменения энтропии при трех процессах этого пути вычисляют изложенными выше способами  [c.94]

    Если процесс проводится обратимо и при постоянной те.мпе-ратуре (изотермически), то изменение энтропии связано с погло- [c.198]

    Таким образом, величина д/Т представляет собой минимальное возрастание энтропии, осуществляемое только в условиях обратимого переноса теплоты, т. е. когда нагреваемая система находится в тепловом равновесии с нагревающим ее окружением. Теплота переходит от одного тела к другому вследствие того, что они не находятся в равновесии, а для того, чтобы перенос тепла осуществлялся обратимым путем, потребовалось бы бесконечно большое время. Подлинно обратимые процессы являются идеализациями реально протекающих необратимых процессов. Но важно отметить, что в любом реальном (необратимом) процессе возрастание энтропии должно превышать величину д/Т, однако чем медленнее и осторожнее будет осуществляться перенос теплоты, тем меньше будет разница между величинами и д/Т. [c.55]


    Каким образом, согласно представлениям классической термодинамики, энтропия связана с теплотой и температурой Как зависит соотношение между ними от того, проводится ли процесс обратимым или необратимым способом  [c.84]

    Большинству студентов труднее усвоить понятие энтропии ее истолкование как меры упорядоченности системы обычно оказывается более успешным, чем истолкование энтропии как количества теплоты, вводимого в систему обратимым путем. Пример со вселенной из девяти клеточек, которые могут заселяться четырьмя атомами, заслуживает того, чтобы рассмотреть его в аудитории, поскольку он помогает студентам понять смысл закономерностей, касающихся изменений энтропии, которые сформулированы в разд. 16-4. [c.578]

    Если система получает обратимым образом количество теплоты q при температуре Т, то об энтропии системы можно сказать, что она а) возрастает на величину qT, б) возрастает на величину q T, в) возрастает на величину, больщую q/T, г) возрастает на величину, меньшую q/T. [c.593]

    Эксергетический метод анализа, основанный на втором начале термодинамики, позволяет оценить степень использования энергии, ее потери, а также получить распределение этих потерь по отдельным аппаратам производства, т. е. выявить наименее эффективные из них. В основе эксергетического анализа лежит понятие эксергии. Эксергия системы в данном состоянии определяется количеством энергии, не характеризуемой энтропией, которое может быть получено от системы или передано ей в результате обратимого перехода системы из данного состояния в состояние полного термодинамического равновесия с окружающей средой [25]. [c.104]

    Энтропия. Теплоту, как и работу (см. стр. 184), можно определять двумя величинами — фактором интенсивности и фактором емкости. Фактором интенсивности в процессах перехода теплоты является температура, так как возможность и направление самопроизвольного перехода теплоты от одного тела к другому зависят только от соотношения их температур. Для процессов, происходящих при постоянной температуре, количество передаваемой теплоты д должно равняться произведению фактора интенсивности (температуры Т) на фактор емкости, который, очевидно, может быть выражен величиной д Т (эту величину называют приведенной теплотой). Для обратимых процессов эта величина не зависит от пути перехода и всецело определяется начальным и конечным состоянием системы. [c.214]

    В середине XIX века Клаузиус на основе второго закона термодинамики показал, что существует такая величина (такая термодинамическая функция), которая является функцией состояния и изменение которой для обратимого изотермического перехода теплоты равно приведенной теплоте процесса. Эта величина получила название энтропии и обозначается буквой 5. Согласно предыдущему, для обратимого изотермического процесса перехода теплоты [c.215]

    Из этого отнюдь не следует, что изменение энтропии в цикле, включающем необратимые процессы, не равно нулю. Энтропия является функцией состояния, и изменение ее не зависит от условий проведения процесса и, в частности, от его обратимости. Если система вернулась в исходное состояние, а это является условием кругового процесса, то ее энтропия всегда принимает исходное значение, и, следовательно, изменение энтропии равно нулю. Но теплота процесса зависит от условий его проведения, и неравенство (VII, 7) означает, что при необратимом процессе становится неприменимым равенство (VI 1,3) и вместо него будет справедливо неравенство [c.217]

    Изменение энтропии всецело определяется начальным и конечным состояниями газа и не зависит от того, протекал ли процесс обратимо или необратимо, происходил ли он с поглощением или выделением теплоты или при = 0. Однако только при обратимом изотермическом проведении процесса AS = q/T (п, следовательно, q = RT n = Лм . [c.232]

    Если же по пути от То до Т вещество при температуре 7п переходит из одной кристаллической модификации в другую, то надо учесть возрастание энтропии при этом переходе. При обратимом изотермическом процессе изменение [c.279]

    Самопроизвольные и несамопроизвольные процессы подразделяются на термодинамически обратимые и необратимые. Равновесные состояния системы могут изучаться на основе принципа существования энтропии. Он утверждает, что существует функция состояния системы — энтропия, изменение которой в равновесных процессах происходит только под действием энергии в форме теплоты. Равновесные процессы в природе и технике никогда не встречаются и представляют собой предельное состояние процесса. [c.83]

    Постулат В. Томсона определяет, что циклически действующая тепловая машина будет являться источником работы, если рабочее тело участвует в круговом процессе между нагревателем и холодильником, которые находятся при разных температурах. Рабочее тело тепловой машины принимает от нагревателя теплоту в количестве при температуре T и передает холодильнику теплоту в количестве Са при температуре Т2 (Т2<.Т ). Разность теплот С]— 2 определяет количество теплоты, пошедшее на производство работы, Численные значения КПД могут быть определены по формулам, приведенным выше. Объединяя формулы (4.4) и (4.5), можно для обратимого процесса из них получить соотношение, определяющее принцип существования энтропии. Однако вначале для выявления новой функции рассмотрим две теоремы Карно С. и Клаузиуса Р. [c.88]

    Вторая теорема. Теорема Карно позволяет определить су-шествование новой термодинамической функции, функции состояния системы — энтропии. Теорема гласит КПД тепловой машины, работаюшей по обратимому циклу Карно, выше КПД тепловой машины, работающей по любому круговому циклу между одними и теми же нагревателем и холодильником (при одной и той же разности температур АТ). [c.89]

    Для термодинамически обратимого процесса на основе принципа существования энтропии имеем такое выражение  [c.98]

    Используя известные значения для к и куо, можно вычислить Ig ку = = 18,1—81 000/4,575 Т сек и рассчитать изменение энтропии реакции 1 при 780° К, которое равно 40 кал моль-град (табл. XIII.14). Для обратимой рекомбинации СН3 + СНзО можно рассчитать значение к-у = 1,5 х X 10 л моль-сек, которое примерно в 7 раз выше значения скорости реком- [c.338]

    Энтропия. Расчеты энтропии системы необходимы при определении ее энтальпии и основаны на втором законе термодинамики. Энтропия 5р любого реального процесса всегда должна быть больше нуля. Если бы 8 была равна нулю, то это означало бы, что процесс совершается без трепия. Такие процессы называются обратимыми. В расчетах обычно принимают, что в механизмах, совершаюш их работу (насосах, компрессорах, турбинах), процессы являются адиабатическими и обратимыми. В этих случаях, согласно второму закону термодинамики, 52 = 5 , поэтому такие процессы называют также изоэнтропийными. Идеальные, или теоретические, значения работы приводятся к реальным значениям с помош ью к. п. д. [c.106]

    Отсюда следует, что в любых изолированных системах (в них могут совершаться только адиабатные процессы) энтропия системы сохраняет постоянное значение dS = 0), если в системе совершаются только обратимые процессы, и возрастает dS>0) при всяком необратимом процессе. Следовательно, в изолированны системах всякий самопроизвольно протекающий процесс сопровождается возрастанием энтропии. Процесс протекает самопроизвольно до тех пор, пока система не перейдет в равновесное состояние, в котором энтропия достигает значения, максимального для данных условий, т. е. при устойчивом равновесии должно соблюдаться [c.218]

    При недостаточно критическом применении второго закона термодинамики из него можно сделать принципиально неправильный вывод. Согласно второму закону, в изолированной системе во всех обратимых- процессах энтропия не претерпевает изменений, а в необратимых только возрастает. Поэтому, если течение необратимых процессов не исключено, то энтропия такой системы может только возрастать, и это возрастание должно сопровождаться постепенным выравниванием температуры различных частей системы. Если рассматривать вселенную в целом как систему изолированную (не вступающую ни в какое-взаимодействие с другой средой), то можно заключить, что возрастание энтропии должно привести в конце концов к полному выравниванию температуры во всех частях вселеггной, что означало бы, с этой точки зрения, невозможность протекания каких-нибудь процессов и, следовательно, тепловую смерть вселенной . Такой вывод, впервые четко сформулированный в середине XIX в. Клаузиусом, является идеалистическим, так как признание конца существования (т. е. смерти ) вселенной требует признаиид и ее возникновения. Статистическая природа второго начала термодинамики не позволяет считать его универсально применимым к системам любых размеров. Нельзя утверждать также, что второй закон применим к вселенной в целом, так как в ней возможно протекание энергетических процессов (как, например, различные ядерные превращения), на которые термодинамический метод исследования но может механически переноситься. В определенных видах космических процессов происходит возрастание разности температур, а не выравнивание их. [c.220]

    К противоположному случаю относятся мягкие (или пластифицированные) каучуки, обладающие модулем Юнга примерно от 10 до 10 дин см и обратимой эластичностью с удлинением до нескольких сот процентов. Если такой материал растянуть до некоторой длины в пределах умеренного растяжения и затем понижать температуру, поддерживая длину постоянной, то напряжение будет падать пропорционально понижению - абсолютной температуры. Согласно ур. (XVII, 3), это означает, что в данном случае изменение внутренней энергии, связанное с этим напряжением, равно нулю. Следовательно, сила, стремящаяся сократить длину растянутого каучука, всецело обусловлена уменьшением энтропии его при растяжении. Иначе говоря, это означает, что гибкие цепи макромолекул имеют в растянутом каучуке меньшее число возможных конформаций, чем в иерастянутом. Ввиду того что внутренняя энергия каучука не изменяется [c.576]

    Основные свойства энтропии в обратимом процессе при переходе системы из состояния 1 в состояние 2 измейение энтропии определяется по уравнению [c.65]

    Для р< акции, протекающей обратимо в гальваническом элементе, дано урапнение зависимости э. д. с. от температуры. При заданной температуре Т вычислите э, д. с. Е, изменение энергии Гиббса АС, изменение Э1тальпии АН, изменение энтропии А5, изменение энергии Гельмгольца ДЛ и теплоту Q, выделяющуюся или поглощающуюся в этом процессе. Расчет дроизводите для 1 моль реагирующего вещества. [c.317]

    Знак равенства в приведенном соотношении относится к обратимому пр-оц-ессу. Изм енение энтропии в конеч Иом Обрати-..мом процессе можно рассматр.ивать как сумму изменений, имеющих место в больш ом числе бесконечно. малых процессов, на которые можно разбить рассматриваемый конечный процесс. Тогда  [c.10]


Смотреть страницы где упоминается термин Энтропия обратимого: [c.210]    [c.656]    [c.313]    [c.256]    [c.74]    [c.75]    [c.258]    [c.321]    [c.70]    [c.10]    [c.93]    [c.96]   
Современная общая химия Том 3 (1975) -- [ c.2 , c.344 ]

Современная общая химия (1975) -- [ c.2 , c.344 ]




ПОИСК





Смотрите так же термины и статьи:

Абсолютная энтропия идеального газа . 10.6. Обратимые и необратимые изменения состояния . 10.7. Эффективность теплового двигателя

Изменение энтропии в обратимых и необратимых процессах

Обратимость механических процессов и закон возрастания энтропии

ПРИНЦИП ВОЗРАСТАНИЯ ЭНТРОПИИ Обратимые и необратимые процессы

Энтропия в обратимых процессах

Энтропия и максимальная работа процессов Термодинамическая характеристика обратимых и необратимых процессов

Энтропия как критерий обратимости и необратимости процессов

Энтропия, изменения в обратимых процессах



© 2024 chem21.info Реклама на сайте