Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидрирование и дегидрирование

    Реакции гидрирования и дегидрирования углеводородов [c.257]

    Гидрирование и дегидрирование. Катализаторы этих реакций образуют нестойкие поверхностные гидриды. Металлы переходной и платиновой групп (Ni, Fe, Со и Pt) могут ок азаться пригодными аналогично окислам или сульфидам металлов переходной группы. Данный тип реакций является чрезвычайно важным он включает такие процессы, как синтез аммиака и метанола, реакцию Фишера—Тропша, оксо-синтез, синтол-прбцесс, а также получение спиртов, альдегидов, кетонов, аминов и пищевых жиров. [c.313]


    Механизм реакций гидрирования и дегидрирования. Эти процессы относятся к типу гомолитических превращений, в принципе подобных гетерогеннокаталитическим реакциям окисления. Важную роль играет хемосорбция реагентов на активных центрах (К), при которой за счет электронных переходов с участием катализатора ослабляются или полностью разрываются химические связи в адсорбированной молекуле. Разными методами показано, что, когда водород сорбируется металлами, за физической адсорбцией следуют частичное ослабление связей и диссоциация моле-1 улы  [c.466]

    Процессы дегидрирования и гидрирования имеют очень важное значение в промышленности. Дегидрированием получают ненасыщенные соединения, представляющие большую ценность в качестве мономеров для производства синтетического каучука и пластических масс (бутадиен-1,3, изопрен, стирол), а также некоторые альдегиды и кетоны (формальдегид, ацетон, метилэтилкетон). Реакциями гидрирования синтезируют циклогексан и его производные, многие амины (анилин, гекеаметилендиамин), спирты (н-пропиловый, -бутиловый и высшие). Процессы гидрирования применяют также при гидрогенизации жиров и получении искусственного жидкого топлива (гидрокрекинг, риформинг, гидрогенизация угля н т. д.). Очень часто реакции гидрирования и дегидрирования являются этапами многостадийных синтезов ценных органических соединений — мономеров, поверхностно-активных ве-щестп, растворителей п т. д. [c.456]

    Энтропия информации кристаллических катализаторов рассчитывалась в связи с решением задач подбора катализаторов в процессах гидрирования и дегидрирования, изотопного обмена водорода с дейтерием, орто-пара-превращения водорода и др. [87]. Исследовалась зависимость энтропии информации кристаллических катализаторов от размера кристалла и структуры активного центра. Были рассмотрены три каталитические системы с различной структурой решетки кристалла 1) гранецентрированная трехмерная решетка кристалла 2) простая кубическая решетка 3) одномерные кристаллы в виде линейных цепочек атомов без изломов и с изломами на т-ж атоме. Первая каталитическая система рассчитывалась для четырех модификации структуры активного центра единичный атом решетки п = 1) дуплет атомов п = 2) трехатомный центр п = 3) шестиатомный центр-секстет Баландина. Модификация третьей каталитической системы — цепочка из N атомов без изломов, цепочка из N атомов с изломом на каждом третьем атоме, цепочка атомов с изломом на каждом четвертом атоме. Зависимости энтропии информации кристаллических катализаторов от структурных параметров активных центров показаны на рис. 2.13, а. [c.102]


    Печи. По назначению печные установки делятся на нагревательные и реакционно-нагревательные, в которых нагрев приводит. к изменению структуры углеводородных газов. В результате образуются углеводороды, не встречающиеся в природных газах (процессы пиролиза, крекинга, гидрирования и дегидрирования). [c.46]

    Равновесие реакций гидрирования и дегидрирования. Очень важной чертой большинства реакций гидрирования и всех процессов дегидрирования является их обратимость. Очевидно, что вследствие экзотермичности гидрирования равновесие будет смещаться в его сторону при пониженных температурах, а для эндотермических реакций дегидрирования, наоборот, благоприятна высокая температура. Температурные зависимости изобарно-изотермического потенциала для наиболее интересных процессов дегидрирования графически изображены на рис. 134 и 135. Для гидрирования они имеют ту же абсолютную величину, по противоположны ИС1 знаку. При этом близкие к нулю или отрицательные значения указывают на возмол<ность практического осуществления реакции и иа смещение равновесия в соответствии с известным урав ением  [c.461]

    Под воздействием поля и образующихся ионов в углеводородной среде протекают сложные радикально-цепные реакции разложения (с разрывом связей С—С и С—Н), полимеризации, гидрирования и дегидрирования, [c.546]

    Различие между полимеризацией этилена в присутствии и в отсутствии фосфорной кислоты состоит в том, что в первом случае наблюдается образование ароматических и парафиновых углеводородов, в продуктах же термической полимеризации этилена образуются небольшие количества парафинов ири полном отсутствии ароматических соединений. По-видимому, фосфорная кислота действует как катализатор гидрирования и дегидрирования. При термической полимеризации получены более высо-кокипящие углеводороды, чем при каталитической. [c.188]

    Первые две стадии реакций контактного окисления, наряду с изложенными выше механизмами, могут протекать по механизму комплексообразования в тех случаях, когда катионы решетки сохраняют свою индивидуальность. Вервей [241 для обратных шпинелей , а затем Морин [25] — для окислов металлов с незапол- ненными З -уровнями электронов указали на такую возможность, объяснив возникновение в таких соединениях электропроводности присутствием в них ионов одного и того же металла в различных валентных состояниях и в эквивалентных позициях кристаллической решетки. Можно предполагать, что подобного рода механизм электропроводности возможен не только для окислов (в том числе и тройных систем окислов [26]), но и для многих полупроводниковых соединений переходных металлов. Базируясь на этих представлениях, Дауден [27 ] рассматривает хемосорбцию на поверхности и явления замещения одного сорбента другим как реакции образования и превращения комплексов по механизму и 8)у2-замещения. Киселев, [28] также рассматривает адсорбцию как процесс поверхностного комплексообразования, когда при возникновении донорно-акцеп-торных связей неподеленная пара электронов лиганда оказывается затянутой на внутренние орбитали атома решетки, являющегос центром адсорбции. При таком механизме адсорбированные молекулы всегда будут в той или иной мере реакционноспособны. Действительно, затягивание неподеленной пары лиганда на внутренние орбитали центрального атома приведет к деформации адсорбированной молекулы и ослаблению внутримолекулярных связей. Отметим попутно, что трактовка Киселева справедливо распространяет электронные представления и на механизм кислотно-основного гетерогенного катализа. Развивая представления теории поля лигандов, Руней и Уэбб [29 ] показали, что механизм реакций дейтеро- бмена, гидрирования и дегидрирования углеводородов на переходных [c.27]

    Далее бьшо исследовано влияние примесей в носителе, которые, не вызывая существенного изменения его кислотности, являются ядами в реакциях гидрирования и дегидрирования. [c.17]

    Например, из этилена можно получить за счет перераспределения водорода этан и ацетилен. Хотя такую реакцию можно рассматривать как сложную, состоящую из двух простых гидрирования и дегидрирования, она может протекать и в отсутствие водорода в реакционной среде, т. е. как простая. Из олефинов Сз и выше за счет перераспределения водорода можно получить не только ацетиленовые, но и диеновые углеводороды. [c.222]

    На равновесные конверсии реакций с участием водорода боль- шое влияние оказывают не только температура и давление (они определяют величину Кы), но и мольное отношение водород сырье — бн . Последнее, как видно из данных табл. 80, может существенно изменять равновесную конверсию х при неизменных температуре и давлении. Поскольку технические процессы и гидрирования, и дегидрирования проводят, вводя водород в реакционную зону (например, для поддержания стабильной активности катализатора), проиллюстрируем влия-. ние бна на х на конкретных примерах для гидрирования и дегидрирования. Пусть протекает реакция гидрирования А+ -ЬНа—> А. Тогда в зависимости от бн и /Сд получим следу-, ющие равновесные конверсии х  [c.297]


    На поверхности катализатора бензол может адсорбироваться либо всей плоскостью, либо одним из ребер. По А. А. Баландину это будут соответственно секстетная и дублетная модели. В случае плоскостной хемосорбции (секстетная модель) размеры молекулы бензола и расстояния между атомами металла должны соответствовать друг другу. Мультиплетная теория А. А. Баландина по параметрам решеток металлов постулирует, что катализаторами гидрирования и дегидрирования могут быть только металлы никель, кобальт, медь, рутений, иридий, палладий, платина, родий, осмий,. рений. Это подтверждено экспериментально, за исключением меди, на которой гидрирование бензола часто не наблюдалось. Однако считают что это исключение кажущееся и незначительная активность меди объясняется энергетическими факторами. [c.131]

    Наконец, при прочих равных условиях селективность зависит от времени контакта, определяющего фактическую степень конверсии исходного вещества. Чем она ближе к равновесной, тем значительнее развитие последовательных реакций более глубокого гидрирования, гидрогенолиза, крекинга или конденсации, ведущих к снижению селективности. Поэтому для каждого процесса гидрирования и дегидрирования имеются оптимальные степень конверсии и время контакта. Обычно гидрирование проводят до высокой степени конверсии (более 90%), а время контакта в разных слу-чая> изменяется от долей минуты до нескольких часов. При более [c.471]

    Кроме термических превращений, протекающих при высокой температуре и сопровождающихся глубоким расщеплением и конденсацией, все реакции гидрирования и дегидрирования являются каталитическими. Применение катализаторов позволяет достигнуть высокой скорости процессов при сравнительно низкой температуре, когда еще пе получают значительного развития нежелательные побочные реакции. Ввиду обратимости реакций дегидрирования-гидрирования и способности любых катализаторов одинаково ускорять как прямой, так и обратный процесс, обе эти реакции в принципе катализируются одними и теми же веществами. Их можно разделить на три главные группы  [c.465]

    Селективность реакций гидрирования и дегидрирования. Селективность этих реакций важна в двух отношениях — для предотвращения более глубоких превращений, ведущих к снижению выхода целевого продукта, и для направленного взаимодействия (ио определенной функциональной группе) исходного вещества. Следовательно, селективность зависит от развития последовательных и параллельных реакций. [c.469]

    Технологические условия проведения процессов гидрирования и дегидрирования отличаются большим разнообразием, вытекающим из физико-химической сущности превращений. [c.208]

    К окислительно-восстановительному взаимодействию относятся реакции окисления и восстановления, гидрирования и дегидрирования. [c.67]

    Проблема гидрирования и дегидрирования продолжает привлекать внимание всех занимающихся изучением гетерогенного катализа. [c.207]

    Переходные металлы являются активными катализаторами в подавляющем большинстве окислительно — восстановительных реакций. Железо, например, является классическим ката/шзатором синтеза аммиака. Кобальт, никель, медь и металлы ш атиновой группы проявляют высокую активность в процессах гидрирования и дегидрирования, а также окисления. Серебро является практически единственным катализатором парциального окисления (например, этилена до его окиси). [c.93]

    Элементарные С1адии ряда приведенных реакций предопределяются бифункциональным характером катализаторов риформинга. С одной стороны, они содержат один металл (платину) или несколько металлов (например, платину и рений, или платину и иридий), которые катализируют реакции гидрирования и дегидрирования. С другой стороны, носителем служит промотированный галогенами оксид алюминия, обладающий кислыми свойствами и катализирующий реакции, свойственные катализаторам кислотного типа. Поэтому разные элементарные стадии реакции могут протекать на различных участках поверхности катализатора металлических или кислотных. [c.7]

    Таким образом, длительный контакт первичного материала нефтей, как и самих нефтей, с аиюмосиликатами при температурах 50—100 °С неизбежно должен создавать условия, благоприятные для реакций распада, сопряжен-пых реакций гидрирования и дегидрирования за счет внутреннего перераспределения водорода и других реакций, постоянно меняющих характер нефтей, как в процессе и консервации в нефтеносных пластах, так и в процессе вертикальной или го]шзонтальной миграции. Образование бензина, подобного природному, происходит при высоких давлениях. В подземных условиях залегания нефти эго требование жидкофазного каталитического нроцесса пыпо 1Няется с избытком. [c.155]

    Эта схема предполагает наличие в катализаторе платформинга двух типов активных центров [дегидрирования Д и изомеризации — И (кислотный)] и миграцию реагирующего метилциклопентана от центра Д к центру И и снова к центру Д. Иногда эту схему распространяют на все катализаторы, обладающие свойствами ускорять как реакции гидрирования и дегидрирования, так и реакции изомеризации (см., например, обзор Однако наличие двух родов активной поверхности в одном катализаторе вряд ли является распространенным явлением и такие представления подвергались справедливой критике. Тем более невероятно наличие двух центров в катализаторе без носителя (ХУЗд). Схема на стр. 235 предполагает, что все превращения, отмеченные в скобках, идут на одной и той же активной поверхности катализатора. Это доказывается экспериментально получением метилциклопентана из бензола, минуя промежуточное образование циклогексана и десорбцию с этой активной поверхности. [c.236]

    Иногда геометрического соответствия недостаточно для проявления каталитической активности металла. Например, медь имеет параметры решетки, лежащие в пределах (2,5 — 2,8) х X 10 м (гси= 2,55 10 м), однако этот металл не проявляет высокой активности в реакциях гидрирования и дегидрирования. По мультиплетной теории кроме геометрического соответствия система субстрат — катализатор должна еще отвечать условию энергетического соответствия. Энергии связей атомов в адсорбированном состоянии резко отличаются от энергии связей в газообразном состоянии (табл. 35). [c.656]

    Кинетика реакций гидрирования и дегидрирования. Скорость этих реакций, как и для других гетерогеннокаталитических процессов, в общем случае может зависеть от диффузионных и кинетических факторов. Первые из них играют тем меньшую роль, чем интенсивнее перемешивание и турбулентность потоков и чем ниже температура. В большинстве случаев кинетика гидрирования и дегидрирования описывается общим уравнением Лэнгмюра — Хин-шельв да, выведенным для случая, когда лимитирующей стадией является химическая реакция на поверхности катализатора. Если обозначить через Ь адсорбционные коэффициенты и через Р — парциальные давления реагентов, то для обратимой реакции дегидрирования при мономолекулярном расщеплении сорбированного вещества пмеем [c.467]

    Н(зависимо от выбора катализатора и других условий на селективность гидрирования и дегидрирования сильно влияет температура, Обычно чем ниже температура, тем селективнее можно провести процесс по более реакционноспособным группам или остановить его на определенной промежуточной стадии. Наоборот, повьипение температуры способствует глубоким превращениям. Существенно, что нежелательные побочные реакции гидрогенолиза, крекинга, дегидроконденсации и другие имеют более высокую энергию активации, чем дегидрирование или гидрирование. Так, для крекинга н-бутана энергия активации равна 250 кДж/моль (я=6С ккал/моль), а для его дегидрирования в н-бутнлен только 168—184 кДж/моль (40—44 ккал/моль), что позволяет повысить селертивность путем снижения температуры. Поскольку при уменьшении температуры одновременно уменьшаются скорость процесса и производительность реактора, то практически в каждом случае можко найти область оптимальных температур, соответствующую минимуму экономических затрат. Дополнительные ограничения на выбор этого оптимума налагает обратимость реакции гидрирова-ния-дегидрирования. [c.471]

    А. Стайлз (гл 3 и 4) описал катализаторы и реакторы для процессов гидрирования и дегидрирования, с помощью которых получают множество химических продуктов. [c.5]

    В качестве примера можно сослаться на реакцию изомеризации нормального парафина. Сперва такой углеводород дегидрируется до нормального олефина на металлическом участке, далее нормальный олефин и зомеризуется на кислотном участке в изоолефин, который затем подвергается гидрированию на металлическом участке, превращаясь в изопарафин. Не только в этой, но и в ряде других реакций каталитического риформинга, важнейшие элементарные стадии — гидрирование и дегидрирование углеводоро ,ов. [c.7]

    От содержания платшш в катализаторе- риформинга зависит ие только его активность, но и стабильность. С увеличением количества платины возрастает активность катализатора в реакш1ях гидрирования и дегидрирования углеводородов [17, 151]. Повышается также скорость ароматизации парафинов [46]. Вместе с тем улучшается стабильность катализатора в реакционном периоде,. в частности снижается его чувствительность к отравлению серусодержащими соединениями [152]. [c.73]

    Промышленное освоение каталитических процессов гидрирования и дегидрирования (присоединения и отщепления водорода) стало возможным благодаря работам Сабатье, Ипатьева, Зелинского. Бурное развитие нефтехимической промышленности вызвало повышенный интерес к использованию этих процессов для получения мономеров и полупродуктов из нефтяного сырья. Гидрирование парафинов (деструктивное) и олефинов, ацетиленовых, алицикли-ческих и ароматических углеводородов синтез аммиака, метанола и синтетического бензина, дегидрирование бутана, бутилена, циклических соединений — далеко не полный перечень процессов, осуществляемых в промышленности. [c.207]


Смотреть страницы где упоминается термин Гидрирование и дегидрирование: [c.73]    [c.181]    [c.634]    [c.656]    [c.656]    [c.133]    [c.9]   
Смотреть главы в:

Окислительно восстановительный катализ на цеолитах -> Гидрирование и дегидрирование

Аналитическая реакционная газовая хроматография -> Гидрирование и дегидрирование

Введение в теоретическую органическую химию -> Гидрирование и дегидрирование

Технология органического синтеза -> Гидрирование и дегидрирование

Химическое использование нефтяных углеводородных газов -> Гидрирование и дегидрирование

Успехи химии ацетиленовых соединений -> Гидрирование и дегидрирование




ПОИСК





Смотрите так же термины и статьи:

Анабазин гидрирование п дегидрирование

Гидрирование дегидрирование сопряженное

Гидрирование и дегидрирование кислот

Гидрирование, гидрогенолиз и дегидрирование

Гидрирование, дегидрирование и циклизация жидких нефтяных продуктов

Гидрирование—дегидрирование углеводородов

Дегидрирование с восстановлением или гидрированием С связи

Ипатьев гидрирования-дегидрирования

Использование методов избирательного каталитического дегидрирования и гидрирования для изучения химического строении высокомолекулярных углеводородов нефти

Катализ, механизм я кинетика реакций дегидрирования и гидрирования

Катализаторы гидрирования дегидрирования

Катализаторы гидрирования и дегидрирования Платина, Палладий, Никель

Катализаторы гидрирования и дегидрирования различных органических соединений

Катализаторы, механизм и кинетика реакций дегидрирования и гидрирования

Каталитическое гидрирование и дегидрирование альдегидов и кетонов. — Взаимодействие нафтенов с олефинами

Кинетика и механизм гидрирования бензола и дегидрирования циклогексана на никеле в условиях обратимости процесса. С. Л. Киперман, Б. С. Гудков, Злотина

Неполное гидрирование и восстановление ароматических углеводородов Получение циклических олефинов и диенов обычным и окислительным ЮГ дегидрированием циклопарафинов

ПИРОЛИЗ, ДЕГИДРИРОВАНИЕ И ГИДРИРОВАНИЕ углеводородов

ПРОЦЕССЫ ДЕГИДРИРОВАНИЯ И ГИДРИРОВАНИЯ

Получение непредельных циклических углеводородов методами гидрирования и дегидрирования

Реакции гидрирования и дегидрирования углеводородов

Реакции дегидрирования и гидрирования

Реакции изомеризации, гидрирования, дегидрирования, окисления, циклизации, конденсации, аминирования и реакции Канниццаро

Термодинамика реакций дегидрирования и гидрирования

Физико-химические основы процессов дегидрирования и гидрирования

Футеровка аппаратов установок гидрирования и дегидрирования

Характер ферментов и механизм дегидрирования и гидрирования



© 2025 chem21.info Реклама на сайте