Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Высокооктановый бензин, получени

    Сырьем для каталитического риформинга служат бензиновые фракции прямой перегонки широкая фракция 85—180 °С для получения высокооктанового бензина, фракции 62—85, 85—115 и 115—150 С для получения бензола, толуола и ксилолов соответственно. Иногда к прямогонной широкой бензиновой фракции добавляют низкооктановые бензины коксования, термического крекинга. Сера, содержащаяся в сырье, вызывает отравление (дезактивацию) катализатора, поэтому платформингу обычно предшествует гидроочистка сырья. Минимальная [c.40]


Рис. 1У-20. Поточная схема гидроочистки бензинов и дизельных топлив (а) и каталитического риформинга бензиновых фракций с получением базового компонента высокооктанового бензина (б) Рис. 1У-20. <a href="/info/95963">Поточная схема</a> <a href="/info/315392">гидроочистки бензинов</a> и дизельных топлив (а) и <a href="/info/1783878">каталитического риформинга бензиновых фракций</a> с <a href="/info/1478872">получением базового компонента</a> высокооктанового бензина (б)
    В табл. 6.16 приведены технико-экономические показатели отечественных процессов получения компонентов смешения высокооктановых автомобильных бензинов. Из таблицы видно, что наиболее энергоемкими являются процессы риформинга и особенно гидрокрекинга и алкилирования. Наименее энергоемкие процессы - изомеризация за проход с получением изомеризата с октановым числом 82 (ИМ) и каталитический крекинг. Повышение октанового числа изомеризата до 92 (ИМ) путем вьщеления -гексана и н-пентана на молекулярных ситах или отделение их ректификацией приводит к резкому возрастанию расходных показателей процесса изомеризации. Тем не менее себестоимость изомеризата с октановым числом 92 (ИМ) в 1,2 раза ниже себестоимости алкилата с октановым числом 92—94 (ИМ). Безусловно, алкилирование, особенно сернокислотный вариант, более дорогой и энергоемкий процесс. Следует отметить, что из всех рассмотренных процессов получения компонентов высокооктановых бензинов процесс изомеризации прямогонных бензиновых фракций отличается наиболее высокой селективностью и низкими эксплуатационными затратами. [c.179]

    Алкилирование включает реакции изопарафинов, главным образом изобутана с пропиленом, бутеном и пентенами для получения высокооктанового бензина. Реакция протекает в жидкой фазе, катализатором служит либо фтористый водород, либо серная кислота. Алкилирование при участии фтористого водорода проводят при 29—37 °С отношение количеств кислоты и углеводорода 1 5 отношение изобутана к олефину, равное 1 7, поддерживается путем рециркуляции концентрация кислоты 85—95% расход кислоты 1,4—2,3 кг/м алкилатов. [c.334]

    Одно из ведущих мест среди вторичных процессов нефтепереработки принадлежит процессу каталитического крекинга тяжелых дистиллятных фракций на мелкодисперсных катализаторах. Целевым назначением процесса является получение высокооктанового бензина. Газы, богатые бутан-бутиленовой и пропан-пропиленовой фракциями, находят широкое применение в качестве сырья для производства высокооктанового компонента бензина — алкилата, а также в производстве синтетического каучука и в нефтехимии. [c.37]


    В основе промышленных способов получения ароматических углеводородов и высокооктановых бензинов лежат реакции С5- и Се-дегидроциклизации алканов. Широко дискутируемым в настоящее время является вопрос о путях превращения алканов в бензол и его гомологи. В настоящее время он перерос академические рамки и важен как для химиков-технологов, так и для специалистов в области приготовления катализаторов. Важное значение приобрел в последние несколько лет вопрос об участии водорода в реакциях дегидроциклизации (или активирования им катализаторов дегидроциклизации).  [c.7]

    Современные авиационные двигатели требуют топлив с высокой детонационной стойкостью. Октановые числа даже наилучших сортов бензинов, полученных из высококачественных нефтей, не превышают 80 единиц. В связи с этим современные авиационные бензины являются смесями бензинов прямой перегонки или каталитического крекинг-процесса с высокооктановыми компонентами и специальными присадками-антидетонаторами. [c.103]

    При каталитическом риформинге углеводороды нефтяных фракций претерпевают значительные превращения, в результате которых образуются ароматические углеводороды. Это—дегидрирование шестичленных нафтеновых углеводородов, дегидроизомеризация алкилированных пятичленных нафтенов и дегидроциклизация парафиновых углеводородов одновременно протекают реакции расщепления и деалкилирования ароматических углеводородов, а также их уплотнения, которые приводят к отложению кокса на поверхности катализатора. Для предотвращения закоксовывания катализатора и гидрирования образующихся при крекинге непредельных углеводородов в реакторе поддерживается давление водорода 3—4 МПа при получении высокооктанового бензина и 2 МПа — при получении индивидуальных ароматических углеводородов. [c.41]

    Если как говорилось выще, простая перегонка нефти дает не более 20/О бензина, то в случае применения каталитического крекинга его количество может достигать 80%. Первоначально процесс крекинга разрабатывался и осуществлялся для получения ароматических углеводородов бензола, толуола, ксилола, необходимых для производства взрывчатых и разнообразных химических продуктов. Одно из важнейших назначений крекинга помимо получения высокооктанового бензина — получение газообразного непредельного сырья (этилен, пропилен, бутилены, изобутилен) для химической переработки. Сырьем для крекинга теперь служат не только нефтяные фракции, но и природные газы, так как в условиях крекинга может происходить не только разрыв связей С — С, но и образование новых. [c.128]

    Фракционный состав сырья выбирается в зависимости от целевого назначения процесса. Если процесс проводится с целью получения индивидуальных ароматических углеводородов, то для получения бензола, толуола и ксилолов используют соответственно фракции, содержащие углеводороды (62 — 85 °С), С, (85—105 °С) и Сд (105— 140 °С). Если риформинг проводится с целью получения высокооктанового бензина, то сырьем обычно служит фракция 85 — 1 .0 °С, соответствующая углеводородам С —С, . [c.184]

    Риформинг (и л а т ф о р м и н г)—процесс преобразования нафтеновых и высокомолекулярных парафиновых в ароматические углеводороды при повышенных температурах и давлениях в присутствии катализатора. Каталитическому риформингу подвергают бензиновые фракции с началом кипения 60 °С и выше и концом кипения не выше 180°С. Фракции с более низким началом кипения (30—60°С) не подвергаются риформированию, поскольку в этой фракции содержатся углеводороды с числом атомов углерода меньше шести, пе способные превращаться в ароматические углеводороды. Для получения высокооктанового бензина используют фракции 85—180°С и 105—180°С при одновременном получении ароматических углеводородов и вы-15—14 217 [c.217]

    ПОЛУЧЕНИЕ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ ПРИ ПРОИЗВОДСТВЕ ВЫСОКООКТАНОВЫХ БЕНЗИНОВ [c.224]

    Следует отметить важное промышленное значение реакций гидрогенолиза. Они лежат в основе таких процессов, как гидрокрекинг, гидроочистка, получение бензола из его гомологов, некоторых способов производства высокооктановых бензинов и ряда других. В одних случаях эти реакции необходимы, в других — нежелательны. [c.89]

    Высокое октановое число получается при более глубокой конверсии за проход II обычно зависит от степени стабильности углеводородов нефти, направляемых в зону крекинга. Так, исходное сырье с низкой анилиновой точкой и низким содержанием парафиновых углеводородов, выраженным характеристическим фактором Ватсона [27, 28], может дать в результате крекинг-процесса высокооктановый бензин. На любой крекинг-установке высокая температура требуется либо для получения заданной конверсии за проход при использовании более стабильного сырья, либо для достижения большей конверсии нри заданном сырье. [c.34]


    В каталитических установках риформинга лигроина и керосина для получения высокооктанового бензина и ароматических соеди- нений реакторы не имеют теплообменных устройств. Однако установка состоит из нескольких последовательно соединенных [c.371]

    Качество дизельного топлива, полученного в результате гидрогенизации при высоком давлении сырого сланцевого масла над катализаторами типов, описанных выше, очень высокое (цетановое число 50—60). Однако качество полученных гидрированных бензинов низкое (октановое число 40—60), ниже стандартов, установленных для автомобильных бензинов. По этой причине количе-ство получаемого бензина должно быть сведено к минимуму, пока пе а ео будет найдена возмоя ность после- дующего риформирования ого с целью повышения качества. Если о удастся получить остаточный про- .о дукт, кипящий выше фракции дизельного топлива, с низким содержанием азота, то оп мог бы оказаться подходящим сырьем для каталитического крекинга с целью получения высокооктанового бензина, нej вызывающим быстрого отправления катализатора крекинга. [c.283]

    Для получения высокооктановых бензинов пробовали использовать катализаторы, способствующие образованию изопарафинов. В случае когда катализатор на основе железа готовят сплавлением и последующим восстановлением водородом при 800 °С, бензины получаются с октановым числом 80—85 и содержат много изопа- [c.255]

    Бензины, полученные каталитическим крекингом, имеют более высокую детонационную стойкость, чем бензины термического крекинга, что обусловлено главным образом увеличением содержания в бензиновых фракциях ароматических и изопарафиновых углеводородов. Антидетонационные свойства бензинов каталитического крекинга зависят от фракционного состава сырья, режима крекинга, состава катализатора и могут колебаться в значительных пределах. Бензины каталитического крекинга часто используют как базовые для приготовления товарных высокооктановых бензинов. [c.162]

    ШИМ примером является процесс риформинга бензино-лигроиновых фракций для получения высокооктанового бензина. Как и во всех процессах превращения углеводородов при высоких температурах, здесь происходит отложение угля на поверхности катализатора. Однако это можно предотвратить, применяя большой избыток водорода (от 3 до 10 моль водорода на 1 моль сырья). Хотя водород сдвигает химическое равновесие в неблагоприятную сторону, процесс в целом проходит исключительно успешно и фактически вытесняет процессы регенеративного типа с псевдоожиженным и движущимся слоями катализатора для его осуществления требуется простое оборудование с неподвижным слоем катализатора. В некоторых процессах риформинга восстановление активности проводят периодически с интервалом в несколько дней или недель. Ниже приведены рабочий и регенерационный циклы процесса риформинга лигроина на платиновом катализаторе в неподвижном слое  [c.318]

    Процесс флюид-ЮОП используется для селективной переработки газойлевых и более высококипящих углеводородных фракций с целью получения высокооктанового бензина, котельного топлива, олефинов для алкилирования и полимеризации, сжиженного нефтяного газа и других продуктов [c.7]

    Основное назначение этого процесса — понижение вязкости тяжелых смолистых остатков (мазутов, гудронов) от перегонки нефти и получение дополнительного количества бензина за счет термического разложения части высокомолекулярных соединений сырья. В отдельных случаях при углубленном редюсинге гудронов образуются избыточные количества керосино-газойлевых фракций, которые в смеси с прямогонными соляровыми дистиллятами перерабатываются в реакторах установок каталитического крекинга в высокооктановый бензин. [c.53]

    Бензины термического крекинга являются основным компонентом при изготовлении бензинов типа А-66 и могут добавляться в небольших количествах в бензины типа А-72 и А-76. В более высокооктановые бензины компоненты, полученные термическим крекингом, добавлять нецелесообразно ввиду их относительно низкой детонационной стойкости. [c.114]

    Эта зависимость изображена на рис. 43, где показано, что при благоприятных условиях (Ж < 0 Ч << 0) фактические октановые числа могут значительно превышать октановые числа по моторному методу. Вопросы наиболее полного использования детонационной стойкости чувствительных топлив приобретают в настоящее время весьма важное значение, поскольку высокооктановые автомобильные бензины, полученные путем каталитического риформинга жесткого режима, имеют высокую чувствительность [42]. [c.120]

    Описаны основы компаундирования с целью получения товарных высокооктановых бензинов, оценки их качества, аттестации и стандартизации. [c.2]

    Таким образом, с изменением технологии получения высокооктановых бензинов меняются и оптимальные значения степеней сжатия двигателей, а это в свою очередь повлечет за собой новое направление в развитии автомобильного двигателестроения [5]. [c.14]

    Испаряемость товарных высокооктановых бензинов регламентируют в технических условиях такими показателями, как фракционный состав и давление насыщенных паров. Для создания товарного бензина, отвечающего требованиям по испаряемости, прежде всего подбирают соответствующий базовый компонент. Фракционный состав базового бензина должен быть таким, чтобы при имеющихся компонентах можно было обеспечить получение стандартного бензина [9]. [c.173]

    Возможный максимальный экономический эффект от применения высокооктановых бензинов, полученных в результате при-садки ЦТМ к низкооктановым бензинам А-56 и А-66, подсчиты-вается при условии полной замены действующего парка автомобилей старых марок со старыми двигателями, рассчитанными на указанный выше бензин, автомобилями с двигате.тями, работающими на бензине А-76-86. В этом случае народнохозяйственная годовая экономия складывается из экономии  [c.191]

    В тексте имеются ссылки на изданные в 1956 и 1957 гг. издательством Akademie Verlag книги автора Химия и технология парафиновых углеводородов и Химия и технология моноолефинов , в которых часть веществ, упоминаемых в настоящей книге, была рассмотрена значительно более широко и подробно. Процессы, которые не могут рассматриваться как нефтехимические, в особенности сортировка нефтей, получение карбюраторного горючего, а также производство высокооктановых бензинов методами алкилирования и полимеризации, рассматриваются в настоящей книге лишь вкратце. [c.8]

    В то же время, при слабой активности кислотной функции скорость реакций с участием иона карбония, включая дегидроизомеризацию и дегидроциклизацию, недостаточно велика, что, в свою очередь, должно вести к увеличению образования углеводородов -С и к снижению выхода риформата, т.е. к снижению селективности поцесса. Активность кислотной функции катализатора риформинга в основном определяется наличием на его поверхности хлора. При этом вполне закономерно ставится вопрос какое же конкретное содержание хлора должно поддерживаться на поверхности катализаторов риформинга, как алюмоплатиновых, так и новых би- и полиметаллических. Проведенные нами исследования показали, что для алюмоплатинового катализатора АП-64 оптимальное содержание хлора находится в пределах 0,55-0,65 % мае. Потеря хлора ниже 0,55 % приводит к значительному снижению активности и стабильности катализатора, при превышении оптимума наблюдается резкое увеличение гидрокрекинга углеводородов, падение выхода риформата, быстрое закоксовывание катализатора. Для полиметаллических платино-рений-кадмиевых катализаторов (типа КР-104, КР-108, КР-110) оптимальное содержание хлора, как показали наши исследования, находится на уровне 0,9-1,0 % мае. Регулирование содержания хлора на поверхности катализатора во время его эксплуатации служит технологическим приёмом, использование которого, наряду с обычными параметрами процесса, делает возможным получение высоких выходов высокооктанового бензина или ароматических углеводородов. [c.38]

    Технологические схемы блоков разделения гидрогенизатов гидроочистки и катализатов риформинга с получением высокооктановых бензинов зависят от сырья и давления реакции. На алю-мокобальтмолибденовых и платиновых катализаторах (давление реакции 4 МПа) газы из гидрогенизата и катализата выделяются обычно двухступенчатой холодной сепарацией. На I ступени выделяется водородсодержащий газ при давлении реакции и температуре около 40°С ( Б сепараторе высокого давления) на IIступени при этой же температуре и давлении 0,5—0,6 МПа отделяются растворенные углеводородные газы (в сепараторе низкого давления) (рис. 1У-21). В системе холодной двухступенчатой сепарации получается водородсодержащий газ (до 60—75% об. Нг) при сравнительно небольших потерях водорода с углеводородным газом. [c.231]

    В тех случаях, когда применялась высокая температура, предполагали, что крекинг проходит в паровой фазе. Поэтому стали считать, что для получения высокооктанового бензина необходимы высокая температура и парофазпое состояние, хотя в действительности этот процесс обусловливается влиянием других рабочих параметров. [c.34]

    Термический риформинг является особым видом крекинг-процесса, имеюш им своей целью превращение низкооктанового лигроина в высокооктановые бензины. Повышая октановое число бензинов, этот процесс также сильно увеличивает их испаряемость. Риформинг особенно полезен для получения бензинов с изменяющейся в широком интервале упругостью паров, что особенно важнр в условиях сезонных колебаний температуры. [c.45]

    Каталитический риформинг (англ. reforming, от reform — переделывать, улучшать) — процесс переработки бензиновых фракций для получения высокооктановых бензинов, выделения товарных ароматических углеводородов (бензола, толуола, ксилолов) и производства технического водорода. [c.3]

    Процесс ультра-ортофлоу фирмы Келло используется для получения из различных фракций нефти, в том числе и тяжелых, высокооктанового бензина, легких олефиновых углеводородов для алкилирования или полимеризации, а также средних фракций, используемых как котельное или дизельное топливо. [c.5]

    Процесс фирмы Эйр Продактс энд Кемиклз используется для крекинга различного сырья (от атмосферного газойля до мазута) с получением высокооктанового бензина, средних дистиллятов или сжиженного нефтяного газа. [c.10]

    Процесс фирмы Стоун энд Вебстер инжинирин1> используется для селективного крекинга мазутов с высоким содержанием асфальтенов и обычных вакуумных газойлей с получением высокооктанового бензина, средних дистиллятов и олефинов Сз—С4. [c.12]

    Процесс флексикрекинг используется для каталитического превращения разнообразных газойлей (прямогонных и крекинг-газойлей), деасфальтизатов и остаточных нефтяных фракций с целью получения более низкомолекулярных продуктов, в частности, олефинов, высокооктановых бензинов, средних дистиллятов, других целевых фракций. [c.15]

    Следует отметить, что обеспечение полного соответствия между требованиями двигателей и детонационной стойкостью топлива особенно важно при использовании высокооктановых бензинов в связи с тем, что стоимость каждой октановой единицы резко возрастает с повышением общего уровня детонационной стойкости бензинов. Поэтому в пятидесятых годах за рубежом были проведены исследования, которые показали, что экономические выгоды от повышения степени сжатия двигателей будут превалировать над затратами в нефтепереработке, связанными с производством высокооктановых бензинов, при степенях сжатия двигателя 9,5—10,5 и октановых числах применяемых бензинов — около 100. Но эти оптимальные значения были найдены для существовавшей в то время технологии получения бензинов с добавлением свинцовых антидетонаторов. В последние годы во всех экономически развитых странах наметилась тенденция последовательного сокращения содержания токсичного антидетонатора в бензинах вплоть до полного отказа от его применения в целях оздоровления окружающей среды. Повышение детонационной стойкости товарных бензинов с помощью высокооктановых компонентов намного дороже, чем с помощью свинцовых антидетонаторов, поэтому оптимальные октановые числа неэтилированных бензинов, очевидно, будут не выше 91—93. Такие бензины могут обеспечить бездетонационную работу двигателей со степенью сжатия не более 8,5. [c.14]

    Весьма перспективным является получение из метанола бензина. Одна из модификаций этого процесса Mobil основана на использовании цеолитного катализатора ZSM-5. Катализатор имеет специфическую структуру две системы пересекающихся каналов прямых и синусоидальных, образующих эллиптические окна . Процесс обеспечивает превращение метанола в высокооктановый бензин с получением в качестве побочных продуктов только воды и углеводородных газов. [c.88]

    Для установок платформинга, ориентированных на получение высокооктанового бензина, необходимо знать не только выход и химический состав бензина, но и его октановое число 04. Последнюю величину можно определить на основе рассчитываемых величин Пгув- Изучение смеси 04 платформатов и 04,- смешения групповых компонентов показало [1], что можно пользоваться соотношением  [c.147]


Смотреть страницы где упоминается термин Высокооктановый бензин, получени: [c.101]    [c.140]    [c.50]    [c.257]    [c.141]    [c.142]    [c.6]    [c.81]    [c.148]    [c.74]   
Техника высоких давлений в химии (1952) -- [ c.25 ]




ПОИСК





Смотрите так же термины и статьи:

Высокооктановый бензин



© 2025 chem21.info Реклама на сайте