Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель и его сплавы эксплуатация

    В общем случае металлы более коррозионноустойчивы к фтористому водороду, чем к хлористому водороду. В качестве материала контейнеров при работе с фтористым водородом могут служить разнообразные конструкционные металлы или сплавы, в том числе стали, медь и сплавы на основе меди, никель, алюминий и платина. При эксплуатации в умеренных температурных режимах материалом для контейнеров могут служить окись алюминия, никель, сплавы, содержащие молибден и никель, платина и плотный графит. Выше 700° только платина и графит выдерживают агрессивное воздействие HF. Если некоторая коррозия допустима, то можно применять никель. Выше 1200° можно применять только графит. Кроме того, в качестве материалов контейнеров и различных коммуникаций для фтористого водорода можно использовать многие органические полимеры. Обычно применяют полиэтилен, полихлортрифторэтилен и политетрафторэтилен. Предпочитают иметь дело с первыми двумя пластиками вследствие их хорошей обрабатываемости. Полихлортрифторэтилен имеет то преимущество, что он прозрачен. Все силикатные стекла быстро корродируют под влиянием фтористого водорода. Некоторые фосфатные стекла не реагируют с фтористым водородом, однако в настоящее время ни одного из этих стекол нет в продаже. [c.337]


    В процессе выполнения указанных операций и эксплуатации форма и копия могут подвергаться коррозионному разрушению или механическому повреждению. Ниже на примере форм из хромистых и других коррозионно-стойких сталей и копий из никеля, сплавов на его основе и меди рассмотрены проблемы коррозии и разрушения в гальванопластике. [c.273]

    Не всегда принципиально возможные процессы осуществляются в действительности. Так, многие металлы (хром, никель, цирконий) должны были бы полностью окисляться кислородом воздуха — для их окисления АО < 0. Однако они (и их сплавы) широко используются, обеспечивая длительную и надежную эксплуатацию изготовленных из них деталей. Уголь и все углеводороды должны гореть на воздухе, [c.135]

    Тугоплавкие элементы. Поскольку температуры эксплуатации переходят порог 1000° С, можно считать, что резерв прочностных свойств при высоких температурах дисперсионно твердеющих сплавов на основе уже давно применяемых металлов — железа и никеля — фактически уже исчерпан. Следовательно, нужно переходить к тугоплавким элементам и соединениям на их основе. 214 [c.214]

    Отдельно следует рассмотреть применение молибдена и его сплавов для нужд большой химии. При использовании молибдена для изготовления различных изделий возникают значительные технологические трудности. Некоторой пластичностью молибден обладает лишь в деформированном (ниже температуры рекристаллизации), а следовательно, и в наклепанном состоянии. При сварке в зоне, прилегающей к сварному шву, происходит рекристаллизация и металл полностью охрупчивается. Таким образом, молибден относится к числу несвариваемых металлов. Однако высокая температура плавления и возможность эксплуатации молибдена при температурах 1500-2000°С, когда сплавы железа и никеля переходят уже в жидкое состояние, вызывают необходимость преодолевать эти технологические трудности. [c.86]

    При затруднениях в определении скорости коррозии рекомендуется пользоваться распределением металлов по группам, в пределах которых контакт может считаться допустимым. Для атмосферных условий эксплуатации можно выделить пять таких групп I — магний П — алюминий, цинк, кадмий П1 — железо, углеродистые стали, свинец, олово IV — никель, хром, коррозионностойкие стали (в пассивном состоянии) типа Х17 и 18—8 V — медно-никелевые и медноцинковые сплавы, медь, серебро, золото. [c.74]

    Опыт эксплуатации теплообменников из сплава 70—30 на 20 эсминцах ВМС США показал, что после 20-летней эксплуатации забивается в среднем лишь 0,37 % конденсаторных трубок. Некоторые из трубок разрушились со стороны, находящейся в контакте с паром. Еще более высокая стойкость сплава 70—30 отмечается на береговых установках, использующих чистую морскую воду. При использовании загрязненной воды скорость забивания трубок продуктами коррозии примерно в 9 раз выше, однако и в этом случае результаты значительно лучше, чем для других медных сплавов. В более агрессивных условиях из двух рассматриваемых сплавов системы медь — никель чаще используется сплав 70—30, обладающий более высокой общей коррозионной стойкостью. В то же время в стоячей морской воде этот сплав характеризуется большей склонностью к питтингу, чем сплав 90—10. [c.114]


    Фазовые превращения нужно учитывать при эксплуатации изделий из любых материалов, тем более из композитов - сложных соединений, работающих в экстремальных условиях, где обычные материалы не могут быть применены, например, жаропрочные стали не могут быть использованы при Т>700°С, предельные рабочие температуры сплавов на основе никеля не превышают 1000°С. Для требований современной техники указанные параметры уже недостаточны. Тугоплавкие металлы ( У, Мо, № и др.) и сплавы на их основе, обладая высокими температу-ра.ми плавления, имеют низкую окалиностойкость и требуют создания [c.40]

    Металлокерамические фильтры изготовляют из бронзы, латуни, никеля, простой и нержавеющей стали и других металлов. В некоторых случаях для защиты от коррозии фильтры, изготовленные из стали, хромируют. Фильтры из меди или из сплавов, содержащих медь, непригодны для конверторов, предназначенных для окисления нафталина, так как в результате окисления материала фильтров может образоваться окись меди. Последняя при высокой температуре окисляет нафталин до продуктов полного сгорания. Металлокерамические фильтры значительно дороже керамических фильтров и фильтров из стеклянной ткани, тем не менее высокая механическая прочность и большая надежность в эксплуатации обеспечивают экономическую целесообразность применения металлокерамических фильтров . [c.74]

    Ранее неоднократно высказывалось мнение, что рекристаллизация сама по себе не имеет неблагоприятного значения для эксплуатации. Однако Ште-гер и Майстер [1455] установили иа сплаве Нимоник 80А (содержащем примерно 19 % хрома и 75 % никеля), что с увеличением размера зерна обе скорости звука падают, следовательно уменьшаются также модули упругости на растяжение ( ) и на сдвиг (G). Кроме того, при испытаниях на длитель- [c.434]

    Гальванические покрытия нашли широкое применение в различных отраслях машино- и приборостроения. Покрытия на основе вольфрама и молибдена придают изделиям, изготовленным из стали или меди, повышенную термостойкость покрытия серебром, золотом, палладием и сплавами на их основе обеспечивают электропроводность и коррозионную стойкость покрытии никелем и кобальтом повышают коррозионную стойкость, магнитные характеристики и их стабильность в процессе эксплуатации узлов и агрегатов и т. д. [c.3]

    Медь н ее сплавы в средних и жестких условиях эксплуатации сочетаемы с медью и ее сплавами, хромом, никелем, серебром, золотом, оловом, оловянно-свинцовым припоем, анодированными алюминием и его сплавами, сталью фосфатированной и окрашенной (для эксплуатации в тропиках — с медью и ее сплавами, никелем и серебром, а в морских условиях — с медью и ее сплавами и сталью фосфатированной и окрашенной). [c.11]

    Олово II его сплавы в средних и жестких условиях эксплуатации сочетаемы с хромом, никелем, медью и ее сплавами, серебром, золотом, оловом, оловянно-свинцовым припоем, кадмием, сталью хромовой и хромоникелевой, сталью фосфатированной и окрашенной, алюминием и его сплавами, анодированными и окрашенными (для эксплуатации в морских условиях — со сталью и цинком, фосфатированными и окрашенными, а в тропиках — с оло-во.уг, кадмием и цинком пассивированными, алюминием и его сплавами анодированными и окрашенными). [c.11]

    Кадмиевые покрытия наносят на сталь, медь, алюминий и их сплавы. В качестве подслоя используют медь, латунь или никель. В зависимости от условий эксплуатации минимальная толщина кадмиевых покрытий колеблется в пределах 6 — 24 мкм. [c.175]

    Трубы печей ввиду жестких термохимических условий их эксплуатации изготовляются из дефицитных сплавов, состоящих из никеля и хрома. [c.228]

    Опыт эксплуатации сплавов типа хастеллоя в СССР и за рубежом показал, что их сварные соединения подвергаются в ряде сред МКК, ножевой коррозии, а также охрупчиванию. Для уменьшения склонности к МКК и охрупчиванию необходимо применение термической обработки после сварки или снижение углерода (менее 0,02%), железа (менее 0,5—1%), кремния (менее 0,2%) и введение карбидообразующих элементов. Наиболее полно указанным требованиям по химическому составу должны отвечать отечественные никель-молибденовые сплавы марки [c.38]

    Сплавы типа белого золота, содержащие большие концентрации никеля, относительно хорошо сопротивляются потускнению при эксплуатации их внутри помещения. В атмосфере закрытого помещения скорость потускнения сплавов золота с серебром падает довольно равномерно от сплавов с большим содержанием серебра до сплава с 70% золота. [c.306]

    Мембраны из поликомпонентных сплавов на основе палладия, серебра и никеля допускают эксплуатацию при температурах до 600 °С, при этом необходима предварительная очистка разделяемой газовой смеси от серосодержащих соединений, окиси углерода, галогеивдов и других примесей, которые способны образовывать с металлами устойчивые химические соединения (гидриды, карбиды, нитриды, оксиды), снижающие скорость диффузии. Следует помнить, что при более низких температурах, помимо снижения коэффициента диффузии, падает скорость диссоциации газа и химическая стадия процесса проницания становится лимитирующей. [c.119]


    Вредное влияние меди, железа, никеля сказывается также, если они находятся в виде ионов в водном растворе, вследствие их катодного осаждения на алюминии. Поэтому в замкнутых полиметаллических системах, в которых циркулируют водные растворы, наблюдается усиление скорости коррозии алюминия и его сплавов, даже если они не находятся в электрическом контакте с элементами из меди. При определенных условиях они склонны к специфическим видам коррозионного разрушения — питтингу, межкристаллитной коррозии, растрескиванию, расслаиванию. Склонность алюминиевого сплава к питтипгообразованию определяется разностью между потенциалом активирования п.т и стационарным потенциалом E . Чем больше эта разность, тем больше стойкость сплава к питтингообразованию и меньше вероятность, что незначительные изменения условий эксплуатации (анодная поляризация сплава за счет неодинакового распределения кислорода, попадание окислителя и др.) выведут сплав из пассивного состояния. [c.55]

    В усовершенствованном в последующие годы процессе катализатор представляет собой раствор хлористого алюминия р треххлористой сурьме, также активированный безводным хлористым водородом (процесс бутамер). Для осуществления процесса в жидкой фазе применяется давление порядка 20 ат. При переработке фракций н-пептаиа и тяжелее требуется циркуляция через рсакцион [ую зону небольших объемов водорода с целью подавления побочных реакций диспропорциоиирования — образования продуктов более легких и более тяжелых, чем сырье. Реактор изомеризации углеводородов в присутствии хлористого алюминия представляет собой мешалку, имеющую покрытие из никеля или никелевого сплава . Опыт эксплуатации промышленных установок показал, что решающее значение имеет тщательный контроль за содержанием влаги в сырье, которое не должно превышать 0,001%. Помимо хлористоводородной коррозии наблюдается воздействие агрессивной среды, образуемой хлористым алюминием с небольшими примесями олефинов и сернистых соединений сырья. [c.257]

    При выборе покрытия и метода его получения для узла изделия, подвергаемого деформации во время обработки и эксплуатации, необходимо принимать во внимание такие факторы, как внутреннее напряжение, пластичность и хрупкость металлических покрытий (и иногда сплавов). Электроосаждаемые покрытия хромом и никелем могут выдержать только незначительную деформацию, не образуя трещин и не отслаиваясь. Чрезмерное утолщение слоев сплава при погружении в расплавленный металл также приводит к хрупкости покрытия и разрушению под действием деформации. Твердость, пластичность и антифрикционные свойства металлических покрытий имеют важное значение при дальнейшей обработке. Мягкое покрытие (так же, как свинец и в меньшей степени алюминий) деформируется под действием нагрузки, что обусловливает эффективное уничтожение некоторых трещин, но вызывает локализованное утоньшение покрытия или даже коррозию основного слоя. Нанесение цинкового или алюминиевого покрытия на сталь обеспечивает ей антифрикционные свойства, поскольку указанные покрытия имеют высокие коэффициенты скольжения 0,45— 0,55 для цинка и 0,7 для алюминия. [c.128]

    Сплавы, легированные алюминием, могут работать в воздушной среде, вакууме и атмосферах, содержащих примесь серы и сернистых соединений. Их используют в основном для изготовления нагревателей промышленных электропечей. Сплавы, легированные кремнием, жаростойки в воздушной и азотсодержащих средах. Они применяются для изготовления нагревателей промышленных и лабораторных электропечей, бытовых приборов и других аппаратов. Наличие нескольких марок сплавов в составе каждой группы объясняется особенностями поведения нагревателей в эксплуатации, разным уровнем технологической пластичности сплавов, дефицитностью никеля, а также традицией применения сплавов в серийных конструкциях электропечей и электронагревательных устройств. Наиболее важными эксплуатационными характеристиками сплавов являются предельная рабочая температура, срок службы и величина удельного электрического сопротивления. Понятие предельной рабочей температуры не является строго определенным. Это рекомендуемая максимальная температура, при которой еще обеспечивается экономически эффективный срок службы нагревателей толстого сечения. Значения предельной рабочей температуры, указываемые в справочниках и маталогах, являются в определенной степени условными, и вопрос о сравнительной стойкости сплавов-аналогов может быть надежно решен пока только путем испытания нагревателей в одинаковых условиях. Ниже приведены предельные рабочие температуры ( 7др ) сплавов в различных средах. [c.107]

    В пиролизере индукционного типа внутр и металлического корпуса размещена индукционная катушка, вдоль оси которой установлена сменная кварцевая трубка. Внутри этой трубки на- ходится термоэлемент из ферромагнитного материала, на который помещают исследуемый образец. Термоэлементы выполняются в двух формах, для жидких и твердых образцов, из сплавов железа и никеля различного состава. Источник питания ПЯ индукционного нагрева включает высокочастотный генератор напряжения и реле времени. После нанесения исследуемого ма- териала на термоэлемент последний вводится в кварцевую трубку. При возбуждении вокруг трубки высокочастотного электромаг- нитного поля температура термоэлемента быстро возрастает до точки Кюри данного материала. Для изменения температуры пиролиза необходимо использовать термоэлемент из сплава другого состава, набор таких термоэлементов гтрилагается к ПЯ и обеспечивает варьирование температуры пироЛиза от 400 до 1000 °С. Как видно из приведенного описания, ячейка фила-ментного типа отличается простотой устройства, малым объемом, высокой скоростью нагрева до заданной температуры, простотой очистки термоэлемента от нелетучих продуктов пиролиза. Недостатком ячеек филаментного типа является не всегда удовлетворительная воспроизводимость температурного режима, особенно на разных ячейках даже одинаковой конструкции, изменение сопротивления нити в процессе эксплуатации. [c.190]

    Если наращенное изделие в свою очередь будет обращен в форму для дальнейшего размножения, то затяжку лучше проводить никелем, так как на никелевую поверхность очевд удобно наносить разделительный слой она не подвержена окислению в такой степени, как медная. Если наращенное изделие по условиям эксплуатации должно иметь на внутренней поверхности слой какого-либо металла, например серебра, то первичное покрытие проводят в серебряной ванне. Если форма приготовлена из цинкового сплава, первичное покрытие должно быть осуществлено в цианистом медном электролите и т. д. [c.98]

    Серебро, золото, родин, палладий в средних и жестких условиях сочетаемы между собой, а также с хро-чюм, инкеле.м, оловом, оловянно-свин-цовым припоем, алюминием и его сплавами (заанодированными), а при эксплуатации в тропиках сочетаемы между собой, с никелем и коррозионно-стойкой сталью. [c.11]

    Цннк и его сплавы в средних и жестких условиях эксплуатации сочетаемы с хромом, никелем (цинк с пассивацией), анодированным алюминием п его сплавами, пассивированным цнн- [c.11]

    Ннкель и хром в средних и жестких условиях эксплуатации сочетаемы с хромом, никелем, серебром, золотом, медью и ее сплавами, кад.мием и цинком, пассивированными оловом и оловянно-свинцовым припоем, сталью фосфатированной и окрашенной, алюминием и его сплавами, анодированными и окрашенными (для эксплуатации в морских условиях — с хромом, никелем, цинком фосфатированным и окрашенным, сталью коррозионно-стойкой или фосфатированной и окрашенной, а в тропиках — с хромом, никелем, сталью коррозионно-стойкой, серебром, золотом, платиной, палладием, родием). [c.11]

    Кадмий в средних и жестких условиях сочетаем с хромом, никелем, кадмием, цинком, пассивированным оловом, оловянно-свинцовы.м припоем, сталью хромистой и хро.моникелевой, сталью фосфатированной и окрашенной, алюминием и его сплавами, анодированными и окрашенными (для эксплуатации в морских условиях — с кадмием. [c.11]

    На одном из предприятий химической промышленности трубчатые теплообменники, изготовленные из никеля, медно-никелевого сплава 400 и сплава Hastelloy В, подвергались интенсивной питтинговой коррозии под действием охлаждающей жидкости— речной воды. Сквозные отверстия в никелевых трубах были обнаружены уже после восьми недель эксплуатации, а через 18—24 месяца практически все трубы из указанных материалов оказались перфорированными. [c.73]

    В зависимости от условий эксплуатации и перекачиваемой жидкости для изготовления деталей проточной части применяют следующие материалы углеродистую и нержавеющую стали, сплавы на основе титана, алюминия и никеля, чугун, бронзу, ферросилид, полимерные материалы, фосфор, керамику, стекломатериалы, графит, а также резиновые и эмалевые покрытия. [c.29]

    Отличаются циклической и динамической прочностью, хороше податливостью и необходимыми упругими св-вами, сохраняют осн. физико-механические характеристики в течение всего времени эксплуатации. Различают В. м. металлические и неметаллические. К металлически м В. м. (табл., рис.) относятся высокопрочные марганцовомедные сплавы и сплавы на основе никеля и кобальта (Нивко-10) нпкель- [c.183]

    Е. В. Сивакова, А. С. Строев. ЖАРОСТОЙКИЕ СПЛАВЫ - сплавы, отличающиеся жаростойкостью. К Ж. с. относятся никель-хромистые и железохромоникелевые сплавы (табл., рис.), обладаю-шде высоким сопротивлением газовой коррозии (см. Коррозия металлов) при высокой т-ре (800—1100° С) в среде воздуха и в др. газовых средах. Стойкость против газовой коррозии зависит от хим. состава сплава, т-ры, состава газовой среды, срока эксплуатации, величины мех. напряжений и цикличности нагрузки. Газовая среда, образующаяся при сгорании грубого нефтяного топлива или особо тяжелых топлив (мазута и т. п.), содержащих повышенное количество серы, ванадия, солей щелочных и щелочноземельных метал лов и др., резко ухудшает коррозионную стойкость сплавов, уменьшая срок эксплуатации изделий из них. В очищенном топливе (напр., керосине, бензине) коррозия проявляется в меньшей степени. Однако с повышением рабочей т-ры или увеличением содержания примеси солей морской атмосферы она может быть катастрофической. Сплавы с большим содержанием хрома или сплавы, подвергнутые спец. легированию, а также изделия с диффузионными покрытиями, созданными в процессе алитирования, хромоалитирова-ния или алюмосилицирования, отличаются более высокой стойкостью против газовой коррозии. Жаростой [c.427]

    КОРРОЗИОННОСТОЙКИЕ МАТЕРИА л Ы — материалы, отличающиеся повышенной коррозионной стойкостью. Различают К. ы. конструкционные (металлические, неметаллические, композиционные), используемые для изготовления конструкций, и защитные, предохраняющие металлические сооружения от коррозии. Материалы, обладающие повышенной хим. стойкостью к активным газовым средам при повышенных т-рах, обычно выделяют в разряд жаростойких материалов (см. также Коррозия металлов. Коррозия бетона, Защитные покрытия). К м е т а л л и ч е с к и м К. м. относятся стали, чугуны, сплавы на основе никеля, меди (бронзы, латуни), алюминия, титана, циркония, тантала, ниобия и др. Их стойкость против электрохимической коррозии в принципе можно повышать увеличением термодинамической стабильности или торможением катодного и анодного нроцессов. На практике повышения коррозионной стойкости технических сплавов обычно добиваются легированием, тормозящим анодный процесс, т. е. улучшающим пассивационные характеристики (см. Пассивирование), обусловливая возможность самопассивиро-вания сплава в условиях эксплуатации. Наиболее легко пассивируются хром и титан. Повышенная способность хрома к пассивации нри его введении в менее пассивирующиеся металлы, напр, железо, может передаваться сплаву. На этом принципе основано получение нержавеющих сталей. Чем больше введено хрома, тем выше коррозионная стойкость [c.625]


Смотреть страницы где упоминается термин Никель и его сплавы эксплуатация: [c.402]    [c.413]    [c.694]    [c.146]    [c.178]    [c.55]    [c.182]    [c.110]    [c.135]    [c.114]    [c.416]    [c.416]    [c.433]    [c.782]    [c.85]    [c.528]    [c.644]   
Оборудование нефтеперерабатывающих заводов и его эксплуатация Изд2 (1984) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Сплавы никеля

Сплавы никеля Jt И h I Сплав



© 2025 chem21.info Реклама на сайте