Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кадмий идентификация

    Правило рядов Тананаева позволяет предсказать ряд химических реакций, разработать селективные, дробные методы идентификации различных катионов и анионов, во многих случаях разделить и количественно определить ионы химических элементов. Этим путем можно легко выделить различные примеси из анализируемых растворов например, ионы меди можно отделить от ионов кадмия действием сульфида свинца (И) в присутствии серной кислоты. Правило рядов было применено также к 8-оксихинолинатам, карбаминатам, дитизонатам металлов. [c.133]


    Идентификация аминокислот и пептидов во фракциях. А. Нингидриновая реакция. Нингидрин реагирует со всеми аминокислотами, имеющими а-МНа-группу, давая фиолетовое окрашивание, за исключением пролина или оксипролина, в реакции с которыми нингидрин дает желтое окрашивание.Некоторые примеси (медь, кадмий и др.) могут влиять на цвет пятен. Для проявления хрома- [c.192]

    В обзоре [154] содержатся сведения о возможности селективного определения и идентификации неорганических соединений, в том числе — и металлорганических соединений — наиболее токсичной формы металлов, осуществляемой для большинства МОС (соединения олова, свинца, ртути, селена, кадмия и др.) методом ГХ/АЭД, ГХ/МС/ИНП и с помощью их комбинаций. [c.605]

    Тем не менее электрохимические [2, 13, 14] методы нашли свое место в анализе тяжелых металлов, относящихся к наиболее опасным загрязнителям окружающей среды, а также (в качестве альтернативного метода) при идентификации некоторых токсичных летучих органических соединений (ЛОС) — альдегиды, амины, анилины, нафтолы, хиноны и др. — в дополнение к газовой хроматографии. На применении электрохимических методов, в частности полярографии, основаны некоторые стандартные методики определения тяжелых металлов в воздухе рабочей зоны промышленных предприятий (свинец, сурьма, медь, цинк, кадмий, олово и др.). утвержденные на федеральном уровне в России и США, а также стандартные методики для атмосферного воздуха и почвы, используемые в России [6, 8, 10—12]. [c.308]

    Муравьиная кислота — реактив для выделения платины и палладия, для отделения бериллия от алюминия и железа, для разделения вольфрама и молибдена уксусная кислота применяется для определения молекулярной массы веществ, для приготовления буферных растворов, как среда и ацетилирующее средство пропионовая кислота— для определения ароматических аминов антраниловая кислота — для обнаружения и гравиметрического определения кадмия, кобальта, меди, ртути, марганца, никеля, свинца и цинка бензойная кислота служит эталоном в колориметрии 2,4-диокси-бензойная кислота применяется для колориметрического определения железа, титана и других элементов лимонная кислота — в качестве сильного маскирующего комплексообразователя, для приготовления буферных смесей, определения белка в моче, как растворитель фосфатов при анализе удобрений молочная кислота — при полярографическом определении металлов, при электролитическом осаждении меди в присутствии железа, цинка и марганца нафтионовая кислота — для колориметрического определения нитрат иона, в качестве флуоресцирующего индикатора олеиновая кислота — для определения малых количеств кальция и магния, в титриметрическом анализе для определения жесткости воды пировиноградная кислота — для идентификации первичных и вторичных аминов, в микробиологии стеариновая кислота — для нефелометрического определения кальция, магния и лития сульфо-салициловая кислота — для колориметрического определения железа, в качестве комплексообразователя, для осаждения и нефелометрического определения белков трихлоруксусная кислота — как реактив на пигменты желчи и фиксатор в микроскопических исследованиях. [c.44]


    Для разделения микрограммовых количеств Аи(П1), Se(IV) и Te(IV) на незакрепленном слое окиси алюминия в качестве подвижных фаз могут быть использованы также водные растворы минеральных кислот (хлорная, соляная, бромистоводородная и фосфорная) различной концентрации. Установлено, что ионы золота и теллура заметно перемещаются только в растворах соляной и бромистоводородной кислот. Для идентификации ионов селена, теллура и золота пригодными являются растворы 3—6 N НС1 и 3—4 N НВг. В растворах НВг, содержащей соли бромида кадмия, ионы Аи(И1) образуют несколько пятен, что, по-видимому, объясняется образованием бромидных комплексных ионов. [c.76]

    Тиолы, как и сероводород, способны осаждать тяжелые металлы из растворов их солей. Наиболее тщательно изученными меркаптидами металлов являются меркаптиды ртути, которые можно получить в чистом виде путем перекристаллизации из органического растворителя. Многие из них имеют очень четкие температуры плавления, что делает их полезными для идентификации исходных тиолов. Сам термин меркаптан был предложен для тиолов, для того чтобы отметить свойство этих соединений связывать ртуть. Среди других металлов, меркаптиды которых были получены, можно назвать серебро, свинец, медь, кадмий и висмут. Некоторые из изученных свойств меркаптидов оказались практически полезными. Так, например, образование меркаптидов свинца представляет собой существенную стадию так называемого облагораживания нефти — процесса удаления вредных серусодержащих соединений [c.439]

    Алкалоиды характеризуются также рядом общих осадочных реакций, которыми пользуются для их открытия и идентификации. К числу алкалоидных реактивов относятся реэктив Вагнера (раствор йода в растворе йодида калия), дающий с алкалоидами или с их солями бурые осадки реактив Майера фаствор дийоднда ртути в растворе йодида калия), дающий белые или желтые осадки реактив Марме (раствор йодида кадмия в растворе йодида калия), дающий беловатые или желтоватые осадки реактив Драгендорфа (раствор йодида висмута в растворе йодида калия). [c.418]

    Примером использования метода ионного обмена в сочетании с Y-спектроскопией для установления радиохимической чистоты изотопов может служить идентификация кадмия-109, образующегося при облучении серебра на циклотроне [154] по реакции Agio9 2п) di . Кроме радиоактивного кадмия, распадающегося путем /(-захвата (Г1д=470 дней), при этом получается также долгоживущий изотоп серебра-110т (7 i/j = 270 дней) по реакции Ag (d,p) Agiio . [c.86]

    Газовая хроматография, интенсивно развивающаясй в последнее время [21], может найти более широкое применение в качестве способа аналитического выделения примесей из чистых веществ. Газовая хроматография с использованием обычных методов детектирования неоднократно привлекалась для идентификации органических загрязнений в жидких полупродуктах синтеза чистейших металлов. В качестве примера можно привести газохроматографический метод определения до 10- —10 объемн.% хлорорганиче-ских примесей в четыреххлористом титане [2]. С увеличением максимальной температуры процесса растет круг объектов анализа и появляется возможность выделения неорганических примесей. Интересной представляется, например, попытка прямого газохроматографического определения малых содержаний кадмия в сплавах (температура процесса разделения 800—1000° С) [757]. Вполне мыслимо сочетание газохроматографического метода разделения анализируемой (летучей) неорганической смеси с детектированием индивидуальных веществ по эмиссионному спектру составляющих их элементов. [c.318]

    В растворе, содержащем РЬ и d, открывают свинец в виде. PbJg (РЬ 21, другую часть раствора выпаривают с H2SO4 (р. 776) и. обрабатывают затем водой, растворяющей dS04- В полученном растворе открывают d в виде щавелевокислой соли ( d 6). Для идентификации щавелевокислого кадмия обрабатывают осадок сероводородом — кристаллы окрашиваются в желтый цвет. [c.204]

    Поскольку потенциал полуволны служит характеристикой вещества, восстанавливающегося или окисляющегося на электроде, этот параметр полярограммы можно использовать для его идентификации. Для данного конкретного вещества величина Е 12 зависит от природы фонового электролита, главным образом из-за различной способности к комплексообразова-нию. В табл. 16-1 приведено несколько характерных примеров. Насколько важно правильно выбрать электролит, можно показать на примере свинца и кадмия. Эти катионы имеют практически одинаковые потенциалы полуволны в растворе NaOH, но образуют хорошо разделяющиеся волны в растворах КС1 или Н3РО4 и даже в K N. [c.353]

    Другое направление микрохимического метода — капельный анализ. В принципе это довольно старое направление, но сегодняшнее определение следовых количеств веществ имеет свои особенности. Когда каплю раствора помещают на фильтровальную бумагу, растворенные вещества концентрируются на небольшом пространстве. Волокна фильтровальной бумаги образуют капилляры, и на такой бумаге можно разделять очень небольшие образцы. История этого метода восходит к Ф. Ф. Рунге. В 1834 г. он обнаружил свободный хлор с помощью бумаги, на которую была нанесена смесь иодида калия с крахмалом [700]. Г. Шифф [256] в 1859 г. применял фильтровальную бумагу, пропитанную карбонатом серебра, для идентификации мочевой кислоты в образцах мочи. X. Ф. Шенбайн в 1861 г. установил, что при попадании капли водного раствора на фильтровальную бумагу вода распространяется быстрее, чем растворенное вещество, и что высота подъема последпего меняется в зависимости от его свойств. Он указал, что это явление можно использовать для разделения солей [257]. В 1898 г. Г. Трей предложил способ разделения следовых количеств меди и кадмия, а также разработал новый прием нанесения капли на бумагу. Кончик трубки фильтровальной воронки вытягивали в капилляр и слегка изгибали. В воронку наливали раствор и касались бумаги кончиком капилляра. При этом образовывалась капля, которая равномерно смачивала бумагу [258]. Подобные наблюдения были использованы при разработке метода бумажной хроматографии. Классические работы Ф. Гоппельсредера, изучавшего зависимость скорости подъема жидкости по капилляру, распространения капель растворов по капиллярам фильтровальной бумаги от ряда факторов, и аналитическое применение этих эффектов обобщены в изданной им в 1910 г. в Дрездене книге Капиллярный анализ ( Кар111агапа-1у8б ). [c.131]


    Оболенцев и Кузыев [61] проводили гидрогенолиз фракции 200—225° С в присутствии промышленного алюмо-кобальт-молиб-денового катализатора гидроочистки. После удаления сероводорода хлористым кадмием углеводороды, выкипающие до 200° С (т. е. образовавшиеся при гидрогенолизе), анализировали на колонках с силиконом ПМФС-4 и авиационным маслом МС-20. Идентификацию осуществляли на основании зависимости между характеристиками удерживания и температурой кипения. [c.188]

    Хранисавлевич-Яковлевич и др. [22] хроматографировали на силикагеле О дитизонаты ртути, свинца, меди, висмута, кадмия и цинка, применив как элюирующий растворитель смесь бензол—метиленхлорид (5 1). Они получили следующие значения Яг. Сй + 0,13 В13+ 0,37 РЬ2+ 0,34 Си + 0,48 1п + 0,50 и Hg2+ 0,58. Из других растворителей для разделения на силикагеле комплексов дитизона применяли бензол, толуол, ксилол и смесь тетрахлорид углерода—хлороформ (5 2) [23]. Грегорович и др. [24] на смешанном адсорбенте силикагель С — кизельгур (7 3) смешанным растворителем бензол—дихлорметан—гептан (25 27 10) проверил разделение цинка (/ 0,41), меди Яf 0,37), никеля (7 /0,34), кобальта ЯfO,29) свинца Rf 0,24), висмута ( /0,20) и кадмия ( /0,05) в виде комплексов с дитизоном. Бодо и сотр. [25] для выделения и идентификации серебра, кадмия, кобальта, меди, ртути, никеля, свинца и цинка при токсикологическом анализе использовали тонкослойную хроматографию на силикагеле 60 (фирмы Мегск) в сочетании с предварительной экстракцией в дитизон — тетрахлорид углерода. Экстракцию проводили при четырех значениях pH, а элюирующим растворителем служил бензол при длине пути элюирования 6—7 см. [c.483]


Смотреть страницы где упоминается термин Кадмий идентификация: [c.289]    [c.148]    [c.509]    [c.44]    [c.192]    [c.28]    [c.14]    [c.441]    [c.242]    [c.441]    [c.290]   
Органические реагенты в неорганическом анализе (1979) -- [ c.264 ]




ПОИСК







© 2025 chem21.info Реклама на сайте