Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионные радиусы химических элементов

Рис. 179. Относительные величины ионных радиусов химических элементов Рис. 179. Относительные <a href="/info/500858">величины ионных радиусов</a> химических элементов

    Ионные радиусы химических элементов [c.162]

Рис. 179. Величины ионных радиусов химических элементов Рис. 179. <a href="/info/500858">Величины ионных радиусов</a> химических элементов
    Акад. А. Е. Ферсман сопоставил величины атомных и ионных радиусов химических элементов, расположенных в периодической системе по диагональному направлению, и показал, что они близки по величине друг к другу (табл. 4). Это объясняет сходство соединений таких элементов в химико-аналитическом отношении и способность к взаимному замещению в кристаллических решетках, несмотря на различие в электрических зарядах их ионов. [c.16]

Таблица 4 Атомные и ионные радиусы химических элементов Таблица 4 Атомные и ионные радиусы химических элементов
    Первоначально сложилось представление об эффективных радиусах атомов, проявляющихся в их действиях, т.е. в химических соединениях. Эффективные радиусы определяли из экспериментальных данных по межъядерным расстояниям в молекулах и кристаллах. При этом предполагалось, что атомы представляют собой несжимаемые шары, которые соприкасаются своими поверхностями в соединениях. При определении значения эффективного радиуса из межъядерных расстояний в ковалентных молекулах подразумевали ковалентные радиусы, при вычислении их из данных для металлических кристаллов — металлические радиусы. Наконец, эффективные радиусы, рассчитанные для кристаллов с преимущественно ионной связью, назывались ионными радиусам[и. Для этого определяли радиус какого-нибудь иона, а затем вычисляли ионные радиусы других элементов из экспериментальных данных по межъядерным расстояниям в кристаллических решетках. Так, с помощью оптических методов, а затем расчетом был определен радиус аниона фтора, равный 0,11.3 нм. А расстояние между атомами Na и Г в решетке МаГ было установлено равным 0,231 нм. Отсюда радиус иона Ма равен 0,231 — 0,113 = 0,118 нм. Металлические радиусы получены делением пополам расстояния между центрами двух смежных атомов в кристаллических решетках металлов. Ковалентные радиусы неметаллов также вычислены как половина межъядерного расстояния в молекулах или кристаллах соответствующих простых веществ. Для одного и того же элемента эффективные радиусы (ковалентный, ионный, металлический) не совпадают между собой. Это свидетельствует о зависимости эффективных радиусов не только от природы атомов, но и от характера химической связи, координационного числа и других факторов (см. табл. 4). Изменение эффективных радиусов атомов носит периодический характер (рис. 22). В периодах по мере роста заряда ядра эффективные радиусы атомов уменьшаются, так как происходит стягивание электронных слоев к ядру (при постоянстве их числа для данного периода). Наибольшее уменьшение характерно для 5- и р-элементов. В больших периодах для и /-элементов наблюдается более плавное уменьшение эффективных радиусов, называемое соответственно г- и /сжатием. Эффективные радиусы атомов благородных газов, которыми заканчиваются периоды системы, значительно больше эффективных радиусов предшествующих им р-элементов. Значения эффективных радиусов благородных газов (см. табл. 4) получены из межъядерных расстояний в кристаллах этих веществ, существующих при низких температурах. А в кристаллах благородных газов действуют слабые силы Ван-дер-Ваальса в отличие, например, от молекул галогенов, в которых имеются прочные ковалентные связи. [c.52]


    Различными методами начали вычислять размеры молекул и атомов. Эти размеры очень малы и выражаются в ангстремах (А). Один ангстрем равен 10 см. Если предположить, что атом имеет форму шарика, то радиус атома водорода составит 0,46 А. В настояш,ее время известны радиусы атомов и ионов большинства химических элементов. [c.30]

    Большое сходство атомных и ионных радиусов редкоземельных элементов находит свое отражение в значительном сходстве их химических свойств. Однако постепенное уменьшение радиусов при переходе от лантана к лютецию обусловливает я определенное химическое различие. [c.131]

    Атомные радиусы. Радиусы атомов и ионов являются очень важной характеристикой. С учетом этого геометрического параметра было объяснено большое число экспериментальных фактов и свойств химических элементов и их соединений. Атомные радиусы химических элементов изменяются периодически в зависимости ог порядкового номера элемента (рис. И), Уменьшаясь от [c.71]

    Атомные радиусы. Радиусы атомов и ионов являются очень важной характеристикой. С учетом этого геометрического параметра объяснено большое число экспериментальных фактов и свойств химических элементов и их соединений. Атомные радиусы химических элементов изменяются периодически в зависимости от порядкового номера элемента (рис. 12). Уменьшаясь от щелочного металла до галогена, атомный радиус следующего щелочного металла снова увеличивается и становится больше радиуса атома предыдущего щелочного, металла. Так, атом натрия имеет радиус 0,186 нм, магния— 0,16 нм, хлора — 0,099 нм, а радиус атома калия вновь увеличивается и становится равным 0,231 нм. [c.73]

    Причинами аналогии по диагонали являются а) близость силы поляризующего действия б) близость ионных радиусов. Величины ионных радиусов обусловливают нередко химические свойства соответствующих ионов. Часто атомы различных групп элементов, теряя одинаковое количество электронов, могут образовывать ионы одинакового заряда с близкими ионными радиусами. Химические свойства таких ионов весьма близки, например, и Zn или А1 и Сг " . [c.56]

    Лантаноидное сжатие приводит к близости атомных и ионных радиусов переходных элементов VI периода и их аналогов, находящихся в V периоде системы Д. И Менделеева. Этим вызывается и значительное сходство химических и большей части физических свойств аналогичных соединений этих элементов. Особо резко проявляется влияние лантаноидного сжатия для циркония и гафния, сходство свойств соединений которых, пожалуй, больше, чем у каких-либо других двух аналогов. [c.672]

    Химическое разделение и идентификацию элементов за Аш осуществляют с помощью ионообменных методов, аналогичных используемым для лантанидов. В обоих случаях достигается примерно одинаковое разделение. Элементы от Аш до Ьш (все в состоянии окисления 3+) элюируются цитратом в порядке, обратном атомным номерам (первый — Ьш и последний — Аш), точно так же, как и лантаниды. Действительно, в обоих случаях последние пять элементов ряда (Ь г — Ез и Ьи — Но) разделяются довольно плохо, следующие два (С1 — Вк и Ву — ТЬ) разделяются лучше, но они очень хорошо отделяются от следующего элемента (Сш и соответственно 0(1). Это, по-видимому, отражает аналогичное изменение ионных радиусов в двух рядах. В обоих случаях большое различие наблюдается между ионами с конфигурациями Р и р, и при этом же переходе можно ожидать заметного увеличения ионного радиуса. Хотя элементы 102 и 103 разделить труднее всего, вполне возможно, что если удастся получить элемент 104, то его отделение не будет затруднительным. Дело в том, что, если наши догадки об электронных конфигурациях этих элементов справедливы, элемент 104 должен быть переходным, а не актинидом. В связи с этим элемент 104 представляет очень большой интерес. [c.245]

    Атомные и ионные радиусы. Условно принимая, что атомы и ионы имеют форму шара, можно считать, что. межъядерное расстояние с/ равно сумме радиусов двух соседних частиц. Очевидно, если обе частицы одинаковы, радиус каждой равен У 2 Так, межъядерное расстояние в металлическом кристалле натрия й == 0,320 нм. Отсюда металлический атомный радиус натрия равен 0,160 нм. Межъядерное расстояние в молекуле Маа составляет 0,308 нм, т. е. ковалентный радиус атома натрия равен 0,154 нм. Таким образом, атомные радиусы одного и того же элемента зависят от типа химической связи. Величины ковалентных радиусов зависят также от порядка химической связи. Например, при одинарной, двойной и трой- [c.152]

    При незначительном возбуждении один из 4/-электронов (реже два) переходит в 5с -состояние. Остальные же 4/-электроны, экранированные от внешнего воздействия 55 5р -электронами, на химические свойства большинства лантаноидов суш,ественного влияния не оказывают. Таким образом, свойства лантаноидов в основном определяют 5с( б5 -электроны. Поэтому лантаноиды проявляют большое сходство с -элементами П1 группы — скандием и его аналогами. Наибольшее сходство с лантаноидами проявляют иттрий и лан-1ан, атомные и ионные радиусы которых близки к таковым у элементов семейства. [c.640]


    Изменение ряда химической активности обязано неодинаковому характеру изменения в данном ряду элементов атомных и ионных радиусов, потенциалов ионизации атомов, теплот возгонки простых ве-ш,еств, с одной стороны, и энергии кристаллической решетки соединений,— с другой. [c.261]

    Атомные и ионные радиусы. От размеров радиусов атомов и ионов зависят многие физические и химические свойства элементов. Обозначают радиусы символом г, выражают в пм или нм. [c.80]

    Некоторые свойства, такие, как ионизационный потенциал, сродство к электрону, электроотрицательность, валентность (степень окисления), а также атомный и ионный радиусы, позволяют предсказать и объяснить химические свойства элементов, также закономерно изменяющиеся с ростом порядкового номера и периодически повторяющиеся у элементов одной группы. [c.107]

    Размеры атомов и ионов (радиусы атомов и ионов) Атомы и ионы не имеют строго определенных границ вследствие волновой природы электронов. Поэтому определяют условные радиусы атомов и ионов, связанных друг с другом химической связью в кристаллах. На рис. 9 представлена кривая, выражающая периодическую зависимость атомных радиусов от порядкового номера элемента 1. [c.30]

    Первая группа параметров, отраженная в табл. 4.7, показывает, что для стеклообразующих катионов типичны высокие заряды ионов, малые значения ионных радиусов и координационных чисел, и, как следствие, высокая напряженность поля. Для элементов-модификаторов, напротив, характерны низкие заряды ионов, большие ионные радиусы и координационные числа в сочетании с низкой напряженностью поля. Для стеклообразующих оксидов характерны высокие значения прочности химической связи. [c.108]

    Эти константы показывают, что в ряду рассматриваемых элементов, как и в других главных подгруппах, с увеличением порядкового, номера I энергия ионизации атомов уменьшается, радиусы атомов и ионов увеличиваются, металлические признаки химических элементов усиливаются. Наряду с этим зависимость свойств простых веществ (/ л, кип, плотность и др.) от 1 имеет более сложный характер. Это связано с тем, что при переходе от магния к кальцию и от стронция к барию происходит изменение структуры кристаллических решеток металлов Ве и Mg кристаллизуются по типу гексагональной решетки (плотнейшая упаковка), Са и 5г кубической гранецентрированной, а Ва— кубической объем но-центрированной. [c.262]

    Многие закономерности химических свойств элементов могут быть объяснены на основе рассмотрения их ионного потенциала 2+/г (2 — заряд катиона г — его радиус). На рис. 2.2 приведена ориентировочная схема изменения свойств ионов в зависимости от их положения в периодической системе элементов. Стрелками показано направление увеличения положительных зарядов ионов радиусов г и величин 7+/г. В периодах слева направо увеличиваются прочность химических соединений (малорастворимых и комплексных) и окислительные свойства ионов. [c.33]

    Ионные радиусы были предложены X. Гольдшмидтом, Л. Полингом и У. Захариасеном. Ионные радиусы отличаются от атомных тем, что для электроположительных элементов они меньше, чем соответствую-ш,ие атомные радиусы, а для электроотрицательных элементов они больше атомных. В дальнейшем уточнением системы атомных и ионных радиусов занимались многие исследователи. Дж. Слетер проанализировал экспериментальные данные для 1200 соединений с самым разнообразным видом химических связей и предложил универсальную шкалу атомных радиусов, которая применима для молекул, ионных крис- [c.138]

    Атом водорода состоит из одного протона (ядро) и одного электрона. Это простейший атом, не имеющий аналогов в периодической системе химических элементов Д. И. Менделеева. Он способен терять электрон с образованием положительно заряженного катиона Н и в этом отношении сходен со щелочными металлами, которые также проявляют степень окисления + 1. Однако катион Н" " представляет собой голый протон, в то время как ядра катионов щелочных элементов окружены электронными оболочками. Ион водорода имеет очень небольшой радиус — 0,53-10 см, поэтому в ходе химических реакций он легко проникает в электронные облака других атомов, причем связь может быть ковалентной. [c.98]

    Основополагающим понятием современной химии является понятие о химическом элементе , т. е. виде атомов с определенной совокупностью свойств. Под свойствами изолированных атомов подразумеваются заряд ядра и атомная масса, особенности электронного строения, потенциалы ионизации, сродство к электрону и электроотрицательность, атомные, орбитальные и ионные радиусы н т. д. Однако необходимо иметь в виду, что изолированные атомы как форма организации вещества могут существовать в природе лишь при достаточно высоких температурах в виде моноатомного пара. Единственным исключением являются благородные газы, для которых при любых условиях и в любом агрегатном состоянии структурной единицей является атом. Все остальные элементы существуют в природе в виде более сложных агрегатов молекул и кристаллов. Таким образом, следует строго различать понятия элемента как вида изолированных атомов и простого вещества как формы существования элемента в свободном состоянии. Следует особо подчеркнуть нетождественность этих понятий хотя бы потому, что один элемент может существовать в виде нескольких простых веществ (аллотропия) .  [c.26]

    Атомный радиус ванадия заметно мег ьше, чем ниобия, а при переходе от ниобия к танталу радиус атома практически не изменяется, несмотря на то, что у тантала появляется новый электронный слой. Аномально малое значение атомного радиуса тантала обусловлено, как и в случае гафния, влиянием лантаноидной контракции. У ниобия и тантала в степени окисления +5 к тому же совпадают и ионные радиусы, что обусловливает большое сходство химических свойств этих элементов. [c.300]

    Произведение квадрата потенциала ионизации на ионный радиус является постоянным в пределах подгруппы химических элементов [c.23]

    По своему химическому характеру оба рассматриваемые элемента, в общем, похожи друг иа друга. Основные различия между ними связаны со значительным увеличением ионного радиуса при переходе от Ве2+ (34 пм) к М. + (78 им).  [c.376]

    Рассматривая физические и химические свойства лантапидов, необходимо учитывать особенности изменения атомных и ионных радиусов этих элементов. Из табл, 1.7 видно, что атомные, а также ионные радиусы от Ьа к Ьи уменьшаются У по величине радиуса близок к ТЬ н Оу, а 5с — к Ьи. Уменьшение радиуса лаитанидов с ростом их атомного номера носит название лантанидное сжатие . Причиной лантанидного сжатия является возрастающее притяжение внешних электронных оболочек (характеризующихся главным квантовым числом /г=5 и л=6), увеличивающимся от Ьа к Ьи зарядом ядра. В одной клетке периодической системы вместе с Ьа располагается еще 14 элементов, тогда как в клетках более легких элементов-аналогов подгруппы скандия (8с, У) в I и П большом периодах находится только по одному элементу. Поэтому явление, аналогичное лантанид1гому сжатию, в этих периодах не наблюдается. В то же время величины атомных и ионных радиусов переходных элементов, стоящих в П1 большом периоде за Ьа—Ьи, из-за лантанидного сжатия очень мало отличаются от таких же величин для их легких аналогов. Так, практически одинаковы радиусы 2г и Н1, мало различаются радиусы МЬ и Та, и дальше по периоду влияние лантанидного сжатия продолжает еще долго сказываться. [c.67]

    Первоначально сложилось представление об эффективных радиусах атомов, проявляющихся в их действиях, т. е. в химических соединениях. Эффективные радиусы определяли из экспериментальных данных по межъядерным расстояниям в молекулах и кристаллах. При этом предполагалось, что атомы представляют собой несжимаемые шары, которые соприкасаются своимн поверхностями в соединениях. При определении значения эффективного радиуса из межъядерных расстояний в ковалентных молекулах подразумевали ковалентные радиусы, при вычислении их из данных для металлических кристаллов — металлические радиусы. Наконец, эффективные радиусы, рассчитанные для кристаллов с преимущественно ионной связью назывались ионными радиусами. Для этого определяли радиус какого-нибудь иона, а затем вычисляли ионные радиусы других элементов из экспериментальных данных по межъядерным расстояниям в кристаллических решетках. Так, с помощью оптических методов, а затем расчетом был определен радиус аниона фтора, равный 0,113 нм. А расстояние между ядрами N3 и Р в решетке ЫаР было установлено равным 0,231 нм. Отсюда радиус иона Ыа+ 0,231—0,113 = 0,098 нм. Металлические радиусы получены делением пополам расстояния между центрами двух смежных атомов в кристаллических решетках металлов. Ковалентные радиусы неметаллов также вычислены как половина межъя-дерного расстояния в молекулах или кристаллах соответствующих [c.67]

    Существование в Периодической системе вставных d и /-рядов существенно влияет на ионизационные потенциалы и атомные (ионные) радиусы последующих элементов. Особенно велико влияние заполненного 4/1 -слоя, которое называется лантаноидным сжатием (контракцией). Это явление заключается в том, что наличие завершенного 4/14-уровня способствует уменьшению объема атома за счет взаимодействия оболочки с ядром вследствие последовательного возрастания его заряда. Поэтому, наприм(ф, с увеличением атомного номера в ряду лантаноидов происходит неуклонное уменьшение размеров атома. Это же явление объяенж т целый ряд особенностей, характерных для d- и sp-элементов VI периода, следующих за лантаноидами. Так, лантаноидная контракция обусловливает близость атомных радиусов и ионизационных потенциалов, а следовательно, и химических свойств -элементов V и VI периодов (Zr—Hf, Nb—Та, Мо—W и т. д.). Особенно ярко это выражено у элементов-близнецов циркония и гафния, поскольку гафний следует непосредственно за лантаноидами и лантаноидное сжатие компенсирует увеличение атомного радиуса, вызванное появлением дополнительного электронного слоя. Эффект лантаноидной контракции простирается чрезвычайно далеко, оказывая влияние и на свойства sp-элементов VI периода. В частности, для последних характерна особая устойчивость низших степеней окисления Т1+ , РЬ , Bi+з, хотя эти элементы принадлежат, соответственно, к III, IV и V группам. Это объясняется наличием так называемой инертной б52-эле- ктронной пары, не участвующей в образовании связей группировки электронов, устойчивость которой опять-таки обусловлена лантаноидной контракцией. У таллия, свинца и висмута участвуют в образовании связи лишь внешние бр-электроны (Tl[6s 6p ], Pb[6s 6p2], Bi[6s 6p ]). Аналогичное явление актиноидной контракции , по-видимому, также должно наблюдаться, хотя и в меньшей степени. Однако проследить это влияние пока невозможно вследствие малой стабильности трансурановых элементов и незавершенности VII периода. Таким образом, положение металла в Периодической системе и особенности структуры валентной электронной оболочки играют определяющую роль в интерпретации химических и металлохимических свойств элементов. [c.369]

    Учитывая, что пока система СИ еще не получила повсеместного распространения, а также чтобы иметь возможность разбираться в старой литературе, следует знать старые единицы иначе невозможно иметь дело с некоторыми широко распространенными константами и результатами измерений. Например, далее в тексте этой книги мы встретимся с постоянной Планка, выраженной как 6,625-10 эрг-с, хотя правильнее было бы представить ее как 6,625 10 Дж-с. Поверхностное натяжение воды приблизительно равно 72 эрг-смно правильнее выразить его как 7,2-10 Дж-см . Радиус иона калия равен 1,33 А, или, правильнее, 0,133 нм. Ионный потенциал важное понятие, которое вводится для обсуждения химических свойств многих элементов, обычно определяется как отношение заряда иона к его радиусу, выраженному в ангстремах. Выраженные в таких величинах ионные радиусы различных элементов представляют собой небольшие, удобные для сравнения числа. Очевидно, в системе СИ ионные потенциалы должны выражаться через метры или нанометры, но в химической литературе их значения традиционно приводятся выраженными через ангстремы. Один ангстрем равен 10 см или 10 °м, эта единица получила широкое распространение, потому что радиусы большинства атомов имеют величину порядка 10- см. [c.26]

    Как только были определены размеры ионов большинства химических элементов, сразу же возник новый метод изображения структур кристаллов. Структура, изображенная по этому методу, представляет собой совокупность шаров разных радиусов, у которых соблюдены относительные размеры. При этом разноименные шары соарпкасаются друг с другом. На рис. 180 показана структура СаРз. В ней сохранены относительные размеры радиусов Са + (1,04) и Р (1,33). [c.141]

    Небольшие различия в ионных радиусах группы элементов, обладающих близкими химическими свойствами, можно использовать для решения петрологических проблем. В группе редкоземельных элементов лантаноидов (от Ьа до Ьи) радиусы ионов в состоянии окисленности 3-1- монотонно уменьшаются от 1,03 А для Ьа + (в шестерной координации) до 0,86 А для Ь11 +. В большинстве магматических систем все редкоземельные элементы (р.з.э.) находятся в состоянии окисленности 3- -. Исключение составляет европий, который может присутствовать в виде Ец2+ и Еи +. Соотношение между этими ионами определяется такими факторами, как летучесть кислорода и состав родоначальной магмы. Данные, приведенные в гл. 5, показывают, что коэффициенты распределения /г для отдельных р.з.э. иногда систематически меняются в зависимости от атомного номера и, следовательно, от ионного радиуса. Вхождение крупных (или легких ) ионов р.з.э. (от Ьа до 8т) в гранаты затруднено, 1 оэтому нормализованный по хондритам спектр распространенности р.з.э. для этого минерала часто обнаруживает заметное обогащение тяжелыми р. з. э. (см. рис. 5.1). В противоположность этому в плагиоклазы затруднено вхождение менее крупных ионов р.з.э. (от 0с1 до Ьи). Возникающий в результате типичный нормализованный спектр распространенности показан на рис. 5.1. В гл. 5 таклсе упоминалось о часто [c.141]

    Как и в других главных погрупПах, в ряду рассматриваемых элементов с увеличением порядкового номера энергия ионизации атомов уменьшается, радиусы атомов и ионов увеличиваются, металлические признаки химических элементов усиливаются. [c.470]

    Малый атомный радиус бериллия (в сравнении с радиусом элементов-аналогов и лития), а также его более высокий потенциал ионизации придают ему слабо электроположительный характер. Так, практически во всех соединениях бериллия связи имеют в большей или меньшей степени ковалентный характер. На химические свойства бериллия значительно большее влияние, чем в случае магния, оказывает малый ионный радиус Бе +, который оценивается примерно в 0,03 нм. Так, соли бериллия имеют значительно более кислую реакцию, так как гид-.ратированный катион бериллия является кислотой (разд. 33.4.4) [Ве(Н,0)4]2+ [Ве(НаО)з(ОН)]+-Ь Н+ [c.602]

    В главных подгруппах периодической системы химических элементов в направлении сверху вниз кислотные свойства высших оксидов неметаллов уменьшаются. Так, например, в главной подгруппе V группы оксид азота (V) обладает более сильными кислотными свойствами (образует одну из сильнейших кислот — азотную кислоту HNQ3). чем оксид фосфора (V) Р2О5. Это объясняется тем, что атом фосфора имеет больший атомный радиус по сравнению с атомом азота. Поэтому действие положительных ионов фосфора на ионы кислорода и водорода слабее, чем соответствующее действие положительных ионов азота, размер которых значительно меньше. [c.132]


Смотреть страницы где упоминается термин Ионные радиусы химических элементов: [c.170]    [c.354]    [c.68]    [c.245]    [c.138]    [c.233]    [c.78]    [c.118]    [c.49]    [c.113]   
Смотреть главы в:

Кристаллохимия Издание 2 -> Ионные радиусы химических элементов




ПОИСК





Смотрите так же термины и статьи:

Ионные радиусы

Радиусы ионов

Химическая ионная

Элемент химический

рий радиус иона



© 2025 chem21.info Реклама на сайте