Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кремний двухвалентный

    От носителя зависит способность металлов к восстановлению. Лучше всего это описано для железа. Несмотря на то что ионы железа на оксиде кремния или на угле легко и полностью восстанавливаются до металла, нанесенные на оксид алюминия ионы Ре "+ при обработке водородом превращаются только в Ре +. Поэтому если для катализа необходимо металлическое железо, то не следует использовать оксид алюминия в качестве носителя. Наоборот, если требуется двухвалентное железо в условиях, способствующих восстановлению, то оксид алюминия является предпочтительным носителем. Аналогично взаимодействуют с носителем и некоторые другие металлы, например родий. [c.14]


    При переходе от лития к фтору Г происходит закономерное ослабление металлических свойств и усиление неметаллических с одновременным увеличением валентности. Переход от фтора Г к следующему по значению атомной массы элементу натрию Ыа сопровождается скачкообразным изменением свойств и валентности, причем натрий во многом повторяет свойства лития, будучи типичным одновалентным металлом, хотя и более активным. Следующий за натрием магний во многом сходен с бериллием Ве (оба двухвалентны, проявляют металлические свойства, но химическая активность обоих выражена слабее, чем у пары Ы — Ыа). Алюминий А1, следующий за магнием, напоминает бор В (валентность равна 3). Как близкие родственники похожи друг на друга кремний 81 и углерод С, фосфор Р и азот Ы, сера 8 и кислород О, хлор С1 и фтор Г. При переходе к следующему за хлором в последовательности увеличения атомной массы элементу калию К опять происходит скачок в изменении валентности и химических свойств. Калий, подобно литию и натрию, открывает ряд элементов (третий по счету), представители которого показывают глубокую аналогию с элементами первых двух рядов. [c.20]

    Итак, молекулярные сита — это однороднопористые кристаллы, состоящие из двуокиси кремния, окиси алюминия и окислов одно-или двухвалентного металла природа последнего определяет радиус пор и, следовательно, сорбционные свойства цеолитов. Путем ионного обмена получают молекулярные сита с самыми различными размерами пор. [c.89]

    Углерод (С) и кремний (5 ). В соответствии с электронной структурой атомов углерод и кремний могут быть двухвалентными (два неспаренных электрона в энергетическом подуровне р). Гораздо более характерны соединения, в которых углерод и кремний четырехвалентны (возбужденное состояние атомов)  [c.271]

    Соответственно сказанному выше существуют четырехвалентные (двуокиси 02, ОеОа) и двухвалентные (моноокиси 510, ОеО) окислы кремния и германия. Наиболее характерными соеди-/ нениями в обычных условиях являются двуокиси.  [c.93]

    Первые два элемента — типичные неметаллы. У германия появляются некоторые черты металличности. Свинец — типичный металл. От углерода к свинцу ослабляются окислительные и усиливаются восстановительные свойства атомов. У соединений четырехвалентных элементов по тому же ряду усиливаются окислительные свойства, а у соединений двухвалентных элементов ослабляются восстановительные свойства. Углерод в виде алмаза — диэлектрик. Кремний, германий и а-олово — типичные полупроводники, имеющие алмазный тип кристаллической решетки (см. рис. 45). У металлического р-олова тетрагональная элементарная ячейка. У свинца ячейка типа К-12. [c.286]


    Явление это особенно заметно именно в IV группе, так как выгодность замещения -уровня в энергетическом отношении возрастает при переходе от VII группы к VI, V и, наконец, к IV группе. Для кремния в природе характерны силикаты с их пространственными структурами, внутренне скрепленные мостиками из двухвалентных атомов кислорода для углерода даже в присутствии окислителей типично сохранение углеродных цепей (без кислородных мостиков), в значительной степени окутанных одновалентными атомами водорода, изолирующего молекулы друг от друга (образование нефти в природе). [c.359]

    Низшие оксиды углерода и кремния СО и 8 0 являются несолеобразующими оксидами, а оксиды двухвалентных германия, олова и свинца ОеО, 8пО и РЬО — амфотерными оксидами. [c.408]

    Результат взаимодействия растворов солей кальция с жидким стеклом заключается в коагуляции силикатного раствора. Состав выпавшего аморфного осадка существенно зависит от того, что к чему приливали, от интенсивности перемешивания, от концентрации используемых растворов, от pH образовавшейся реакционной смеси и может включать в себя как гидроокиси кремнезема и кальция, так и силикаты кальция с захваченными ионами хлора. Такой характер взаимодействия наблюдается с большинством солей двухвалентных металлов. О нем очень часто говорят как о соосаждении гидроокисей металла и кремния, об адсорбции гидроокиси металла на коллоидном кремнеземе или, наоборот, об осаждении кремнезема на окислах и гидроокисях металлов. В очень разбавленных растворах с pH=8- 10 взаимодействие реагентов может проявляться в виде опалесценции, появляющейся через часы или сутки после смешения растворов. Присутствуя в малых концентрациях, ионы двухвалентных металлов, и в частности ионы кальция, вызывают флокуляцию коллоидных форм кремнезема из слабощелочных растворов за счет образования связей =81—О—Са—О—=, но если ионы кальция предварительно переведены в растворимые хелатные формы, то осаждение кремнезема не происходит [2]. [c.116]

    Искусственные цеолиты представляют собой кристаллы, состоящие из оксидов кремния, алюминия и одно- или двухвалентного металла, природа последнего определяет радиус пор и сорбционные свойства цеолита. [c.307]

    В неконсервированной пробе обычно протекают различные биохимические процессы, вызванные деятельностью микроорганизмов или планктона. Эта метаболическая деятельность протекает в отобранной пробе иначе, чем в первоначальной среде, и ведет к окислению или восстановлению некоторых компонентов пробы нитраты восстанавливаются до нитритов или до ионов аммония, сульфаты — до сульфидов, или, наоборот, происходит окисление сульфидов, сульфитов, двухвалентного железа, цианидов. Влияние различных факторов на изменение компонентов, содержащихся в воде, может происходить непосредственно или косвенным путем. Органолептические свойства воды, например запах и привкус, также могут изменяться. Равным образом изменяются цвет, мутность и прозрачность воды. Некоторые компоненты могут адсорбироваться на стенках бутыли (железо, медь, кадмий, алюминий, марганец, хром, цинк, фосфаты) или выщелачиваться из стекла или пластмассы бутыли (бор, кремний, натрий, калий различные ионы, адсорбированные полиэтиленом при предшествующем использовании бутыли). [c.11]

    Марганец широко распространен в природе. Его среднее содержание в земной коре 0,1% [414], а в золе советских нефтей 0,02—0,14% [415]. По своим химическим свойствам он несколько сходен с железом. Известны соединения, в которых его валентность равна 2, 3, 4, 6 и 7. Наиболее устойчивы соли двухвалентного марганца, а среди кислородных соединений — двуокись марганца. При нагревании он легко взаимодействует с галогенами, серой, фосфором, углеродом кремнием, бором, азотом. В канале угольного электрода окислы и карбонат марганца быстро, сульфиды медленнее восстанавливаются до металла. [c.236]

    Синтетические цеолиты как катализаторы начали изучать сравнительно недавно, и пока неясна природа их каталитической активности. Известно, что каталитически малоактивными или неактивными являются цеолиты, содержащие одновалентные ионы металлов. При замене же их на двухвалентные каталитическая активность возрастает, меняются некоторые структурные характеристики.цеолита. Каталитическая активность цеолитов типа резко возрастает с увеличением соотношения 3102 А12О3 — изменение соотношения атомов кремния и алюминия в решетке цеолита влияет на свойства каталитически активных центров. [c.99]

    При изготовлении катализаторов содержание натрия снижают до минимума, так как в его присутствии при высоких температурах в средах, содержащих водяной пар, резко снижается активность и стабильность катализатора. При замене в цеолите одновалентного металла (Na) на двухвалентный и более, например на кальций, рений, церий н др., его структурная характеристика изменяется (увеличивается размер пор) прн этом благодаря наличию на внутренней поверхности кристаллов цеолитов кислотных центров активность катализатора возрастает. Чем больше окнслов кремния и чем меньше окислов алюминия в решетке цеолита, тем больше расстояние между атомами алюминия. Следовательно, валентные связи между атомами алюминия -и других трехвалентных металлов все больше ослабевают, и образуются сильно выраженные диполи. Прн этом активность кислотных центров возрастает. Применяя цеолиты с различными типами решеток и различными катионами металлов, можно регулировать каталитические свойств а цеолитов и получать катализаторы различного назначения. [c.54]


    Такую же пространственную полимерную структуру образует днрксид кремния 3102 (кварц). Молекула 0 = 51 = 0, аналогичная 0 = С = 0, по некоторым причинам не существует. С учетом четырехвалентности кремния и двухвалентности кислорода строение можно представить такой плоской схемой  [c.96]

    Каркасные силикаты. Если четыре иона кислорода принадлежат одновременно двум тетраэдрам, получается бесконечный трехмерный каркас с отношением 51 0 = 1 2. Такие кремнекислородные тетраэдры характерны для полиморфных модификаций диоксида кремния —/Сварца, тридимита и кристобалита. Если ион 51 + замещается на А1 +, группировка приобретает отрицательный заряд, который компенсируется добавочными катионами, расположенными в структурных пустотах. Каждый ион АР+, заместивший в тетраэдре 51 +, дает возможность войти в структуру одному одновалентному катиону. Два иона А1 + позволяют войти одному двухвалентному катиону. [c.31]

    Особенности строения электронных оболочек атомов элементов IV группы обусловливают способность их проявлять переменную валентность (степень окисления). Но если углерод и кремний образуют главным образом соединения, где они четырехвалентны, то для германия, олова и свинца в равной мере возможны и двух- и четырехвалентное состояния, причем устойчивость двухвалентного состояния повышается от германия к свинцу. Это объясняется тем, что у меньших по объему атомов углерода и кремния (и в какой-то мере германия) легко осуществляется 5р -гибридизация, вследствие чего образуется четыре равноценные ковалентные связи. С ростом радиуса атомов склонность орбиталей к гибридизации уменьшается, а удаление неспареиных электронов с р-орбиталей олова и свинца осуществляется легче, чем спаренных электронов с 5-орбиталей. [c.184]

    Из сказанного выше следует, что элементы, образующие полупроводниковые соединения, должны в основном располагаться в третьем, четвертом и пятом периодах таблицы Менделеева. Типичными представителями таких элементов являются кремний и германий. Полупроводниковыми свойствами обладают также серое олово, селен, теллур и соединения трехвалентных элементов с пятивалентными (GaP, GaAs, InSb и др.) и двухвалентных с шестивалентными (ZnS, ZnTe, dS и др.). Элементы, образующие типичные диэлектрики, находятся в основном во втором или первом (водород) периоде. В качестве примера укажем на углерод и его соединения с водородом и фтором. [c.79]

    Общие химические свойства кремния и германия определяются положением этих элементов в таблице Менделеева. Кремний и германий находятся в четвертой группе таблицы, располагаясь соответственно в третьем и четвертом периодах. Во всех своих соединениях кремний и германий выступают как четырех- или двухвалентные элементы. При умеренных температурах (до 700 " К) и в особенности во влажных средах они образуют, как правило, четьЕрехвалентные соединения. Наоборот, нри высоких температурах (порядка 1300 " К) и в сухой атмосфере более типичными являются двухвалентные соединения рассматриваемых элементов. Химические связи в соединениях кремния и германия с элементами крайних групп таблицы Менделеева — полярные и обладают существенным дипольным моментом. Типичным для таких соединений является их взаимодействие с полярными молекулами других веществ и, в первую очередь, с молекулами воды. Соединения с чисто ионной связью для кремния и германия не известны. Следует, однако, иметь в виду, что некоторые полярные соединения рассматриваемых элементов могут частично диссоциировать на соответствующие положительные и отрицательные ионы. [c.92]

    Химические связи в галогенидах германия и кремния являются насыщенными, полярными. Из-за одновалентности галогенов и насыщенного характера связей внутри молекулы ОеГ4, между отдельными молекулами типа ОеГ4 могут действовать только молекулярные, но не валентные силы. Межмолекулярные силы обычно значительно слабее валентных химических связей (см. 9), и поэтому галогениды германия и кремния уже при невысоких температурах (от 200 до ТОО"" К) распадаются на отдельные молекулы, т. е. переходят в газообразное состояние. В этом отношении галогениды принципиально отличаются от соединений германия и кремния с кислородом. Действительно, вследствие двухвалентности кислорода могут образовываться твердые тела, все атомы которых связаны между собой химическими связями. Такая возможность отсутствует у галогенидов, обладающих повышенной летучестью, т. е. способностью к испарению [c.97]

    Помимо описанного выше, для Ge (и Sn) известен нитрид состава СезМг, являющийся производным двухвалентного германия. Он представляет собой темно-коричневый порошок, легко подвергающийся гидролизу. Распад СезМг на элементы начинается около 500 °С. Как и для кремния ( 4 доп. 32), для германия был получен двойной нитрид с литием — LisGeNs. [c.640]

    В зависимости от агрегатного состояния подвижной и неподвижной фаз различают газо-адсорбционную, газо-жидкостную, жидкостно-адсорбционную и жидкостно-жидкостную хроматографию. В газоадсорбционной хроматографии подвижной фазой служит газ, называемый газом-носителем, а неподвижной фазой — твердый адсорбент. В качестве адсорбента в газовой хроматографии используют активированные угли, силикагели, отась алюминия и другие пористые вещества с сильно развитой поверхностью. Так, величина удельной поверхности активированных углей составляет 400—900 м /г. В последнее время в качестве адсорбента начали широко использовать искусственные цеолиты (молекулярные оита) — кристаллы, состоящие из окислов кремния, алюминия и одно- и двухвалентного метал- [c.93]

    При нормальных условиях двухвалентное состояние кремнию несвонственио, хотя оно может играть существенную роль ири высоких температурах (см. SiO, разд. 23.1) в то же время, как уже было замечено (разд. 26.1.2), некоторые соединения Ge(II) стабильны при обычных температурах. Как и соединения Т1(1), соединения Ge(H) представляют особый интерес, так как содержат стереохимически активную свободную электронную пару. Предположение, что свободная электронная пара ведет себя так, как если бы она занимала некоторый объем. [c.317]

    В настоящее время вопросы формирования электронных состояний в данных объектах получили развитие в работах [14, 26— 28], где с использованием кластерного метода дискретного варьирования проведены первопринщшные расчеты влияния на элек-гропныс характеристики 812К20 частичного замещения атомов кремния (81 ) атомами четырех (С ), трех (А1 , Са- ) и двухвалентных (Ве , Mg ) ионов, а также замещений по анионной подрешетке (О -> М) [14, 26, 27]. [c.101]

    Возникает вопрос, какова природа электронзахватывающего центра Например, для кварца могут быть (как это следует из данных ЭПР) вакансии кислорода-кремния, в состав которых входят двухвалентные ионы-компенсаторы (Ре2+, fAg +, Са2+). До сих пор предполагалось, что в кварце основным электронзахватывающим центром являются кислородные вакансии. Однако в этом случае трудно объяснить диффузию щелочных ионов к таким центрам, захватившим электрон, поскольку у дефекта (если говорить о данной локальной области) не хватает еще одного отрицательного заряда для полной компенсации. Аналогично обстоит дело с дивакансией кислородов. Наиболее вероятно предположение, что основным электронзахватывающим центром в кварце являются дефекты типа дивакансий кислород-кремний, в состав [c.79]

    Сведения об активности в олигомеризации олефинов никеля, нанесенного на различные носители, довольно многочисленны как в патентной, так и научной литературе. Еще в 30-х годах XX века Морикава обнаружил, что никель, нанесенный на кизельгур, может вызывать димеризацию этилена при комнатной температуре. Позднее в олигомеризации этилена и хфопилена испытывались катализаторы, получаемые нанесением солей двухвалентного никеля на оксид алюминия, кремния, аморфные и кристаллические алюмосиликаты. Сопоставляя подобные катализаторы с гомогенным координационным катализом, В.Ш. Фельдблюм рассматривал в качестве активного центра гидрид никеля. Другими исследователями активными считались также координационно ненасыщенные атомы N1 и N1 , а также N1 . Основанием для этого служило влияние кислотности носителя и восстановительной атмосферы на повышение активности катализаторов в олигомеризации этилена и пропилена. С помощью метода селективного отравления щелочью и оксидом углерода сделан вывод о протекании олигомеризации прогшлена по бинарному механизму, т. е. как по координационному — на N1 так и по кислотному механизму. При возрастании числа атомов углерода в молекуле алкена возрастает роль кислотного механизма. Хорошие результаты в олигомеризации низших олефинов наблюдаются при нанесении на оксид алюминия смсси сульфатов никеля и железа в присутствии РгО . [c.915]

    Часто к оконным стеклам добавляется в небольших количествах (1%) трехокись бора, ибо она повышает скорость выравнивания, прочность, сопротивляемость атмосферным влияниям и блеск стекла. Однако применение отпосительно больших количеств трехокиси бора (см. образец 13, табл. 1) вызывает резкое изменение свойств стекла, одновременно понижая соотношение щелочей. Вследствие этого понижения точка плавления стекла повышается и в большей степени проявляются характерные свойства кварцевого стекла. Так, боросиликатные стекла имеют очень низкие термические коэфициенты расширения в противоположность обычным стеклам, содержащим кремний в виде единственного кислотного элемента. Поэтому боросиликатпые стекла оказываются устойчивыми против резкого изменения температуры. Те стекла, в которых в надлежаще степени понижено содержание основных окисей, оказываются более устойчивы и в отношении действия водных растворов. Под номером 13 табл. 1 приведен анализ стекла пирекс , являющегося представителем описанного выше типа стекол. Сопротивляемость воздействию воды может быть достигнута при более высоком содер кании щелочи и, следовательно, более низкой точке плавления введением двухвалентного металла. Для этой цели в Иенскоп лаборатории по производству боросиликатпон стеклянной посуды прежде в смесь вводилась 2пО. Однако это приводило к понижению процентного содержания кислотных элементов и соответственно к уменьшению сопротивляемости резкому изменению температуры.  [c.310]

    В соединениях титан обычно четырехгалентен, реже трех- и двухвалентен. Двухвалентные соединения неустойчивы. При нагреве титан взаимодействует с галогенами, кислородом, серой и азотом. Окислы титана в канале угольного электрода восстанавливаются до металла, который с углеродом образует тугоплавкий карбид титана Т1С (т. пл. 3140 °С, т. кип. 4300 °С). В ряду летучести А. К. Русанова титан и его окислы располагаются после ванадия и хрома. Основная масса титана при испарении его окислов из канала угольного электрода поступает в пламя дуги во второй половине экспозиции (рис. 109). При очень сильном нагреве титана с кремнием образуются силициды титана (т. пл. Т1512 [c.269]


Смотреть страницы где упоминается термин Кремний двухвалентный: [c.79]    [c.162]    [c.129]    [c.100]    [c.591]    [c.601]    [c.287]    [c.32]    [c.519]    [c.81]    [c.80]    [c.227]    [c.80]    [c.509]    [c.222]    [c.404]    [c.24]    [c.360]   
Силивоны (1950) -- [ c.188 ]




ПОИСК







© 2025 chem21.info Реклама на сайте