Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Валентные силы

    В результате изучения процессов электролиза (в первой половине прошлого века) было выдвинуто предположение об электрической природе валентных сил (Берцелиус) и установлены различия валентности по знаку. Естественно было в соответствии с поведением элементов при электролизе приписать элементам, выделяющимся на аноде (кислород или хлор), отрицательный заряд в соединении и, следовательно, отрицательную валентность, а элементам, выделяющимся на катоде (водород, металлы), наоборот, положительный заряд и положительную валентность. Берцелиус настойчиво пытался распространить эти представления на все соединения. Однако такой подход к органическим соединениям большей частью не оправдывался, и в органической химии вместо этой дуалистической теории валентности была принята унитарная теория валентности, в основе которой лежало представление о постоянных валентностях, свойственных основным элементам органической химии — углероду (4), водороду (1), кислороду (2) и т. д. без различия знака, и только для азота пришлось допустить возможное различие валентности по величине (3 или 5). В частности, в конце 50-х годов XIX столетия в работах Кекуле, Кольбе и Купера было введено представление, что углерод обычно бывает четырехвалентным и что атомы его могут соединяться между собой образуя цепи. В конце 50-х и в начале 60-х годов XIX столетия А. М. Бутлеровым была создана структурная теория, способствовавшая дальнейшему быстрому развитию органической химии. Им было объяснено явление изомерии [c.55]


    Молекулярные кристаллические вещества характеризуются значительной летучестью, твердость их невелика, они легкоплавки. Особенно низки температуры плавления и кипения у тех веществ-, молекулы которых неполярны. Кристаллы, образуемые благородными газами, также следует отнести к молекулярным, состоящим из одноатомных молекул, поскольку валентные силы в образовании этих кристаллов роли не играют, и связи между частицами имеют тот же характер, что и в других молекулярных кристаллах. [c.145]

    Хемосорбция — это образование достаточно прочного мономолекулярного слоя реагирующих вещест)в на поверхности катализатора. Хемосорбированные молекулы качественно отличны от молекул, находящихся в диффузионном слое. Хемосорбция протекает за счет валентных сил катализатора и по сути дела близка к настоящей химической реакции. Она характеризуется определенной энергией активации и ее следует отличать от обычной физической сорбции (адсорбции или абсорбции), которая не оказывает заметного влияния на прочность связей атомов в молекулах сорбированных веществ. Хемосорбция, наоборот, приводит к значительному ослаблению связей в реагирующих молекулах. [c.216]

    По своей природе ингибиторы коррозии бывают ионными [катионного типа — катапин, ЧМ анионного типа — тиомочевина С5 (ЫН2)2] или молекулярными соединениями (например, антра-ниловая кислота). Ингибиторы адсорбируются на поверхности корродирующего металла или электростатически (адсорбция ионов и полярных молекул за счет кулоновских сил при соответствующем знаке заряда поверхности металла) или специфически (адсорбция поверхностно активных ионов и молекул за счет молекулярных ван-дер-ваальсовских сил), или химически (хемосорбция ионов и молекул за счет валентных сил химического сродства) возможна также адсорбция их вследствие одновременного действия разных сил. [c.345]

    Следует отметить, что хемосорбция ограничена образованием мономолекулярного слоя и, таким образом, является одной из стадий реакции на поверхности, поскольку валентные силы быстро убывают с увеличением расстояния. Физическая адсорбция никогда не ограничивается мономолекулярным слоем. [c.207]

    Хотя решетка образуется в этом случае атомами инертного газа,однако по характеру связей она относится ки юлекулярным, а не к атомным решеткам, так как валентные силы [c.139]

    Для правильного понимания этого процесса необходимо учесть, что различные атомы поверхностного слоя адсорбента находятся отнюдь не в одинаковых условиях. Поверхность твердого тела, а в особенности хорощего адсорбента, не является гладкой, а имеет многочисленные ультрамикроскопические выступы и углубления. Степень насыщенности валентных сил атомов, расположенных на различных участках поверхности, различна, а следовательно, неодинакова и способность к взаимодействию с атомами и молекулами окружающего газа. Наиболее активные участки поверхности особенно энергично адсорбируют молек-улы данного газа или пара, причем вид газа, его химические свойства имеют первенствующее значение, т. е. адсорбция в данном случае специфична. Адсорбция при этом сопровождается выделением значительного количества теплоты, далеко превосходящего теплоты конденсации и отвечающего тепловым эффектам химических процессов. Такую адсорбцию называют химической адсорбцией. [c.371]


    С помощью этой формулы, так же как с помощью представлений Клауса ( диагональная формула) и Армстронга — Байера ( центрическая формула), стремятся показать, что под действием суммарного сродства валентные силы атомов углерода соверщенно единообразно соединяют все СН-группы бензола в шестичленную очень устойчивую кольцевую систему. При этом предполагают, что парциальные валентные силы, которые действуют вне молекулы и поэтому способствуют в первую очередь реакциям присоединения, должны быть невелики и во всяком случае меньше парциальных валентных сил олефинов, так как бензол обладает относительно насыщенным характером. Кроме того, исследования последнего времени на большом числе примеров показали, что различие между степенью насыщенности соединений жир  [c.470]

    Дисперсионные силы аддитивны. Это объясняется тем, что на больших расстояниях между молекулами валентные силы, вычисленные из первого приближения теории возмущений, очень малы. При втором приближении определяется деформация электронных оболочек атома, так как энергия валентных связей убывает с [c.40]

    Неаддитивный член Днз предполагается малым для атомов молекул с насыщенными валентными связями и поэтому часто не учитывается. Можно ожидать, что он будет очень большим для атомов с неспаренными электронами. Это действительно имеет место при высоких температурах в диссоциированных газах, где межмолекулярные силы являются химическими валентными силами, проявляющими эффект насыщения (два атома водорода Н могут сильно притягиваться друг к другу и образовывать молекулу Н2, но тогда третий атом Н не будет сильно притягиваться). Подставляя (2.75) в выражение для Qз, а дз, р2 и 01 — в уравнение (2.62), после некоторых алгебраических преобразований для С получим следующие выражения  [c.42]

    Активированная адсорбция, или хемосорбция, обусловлена проявлением химических, валентных сил между адсорбированными молекулами и атомами поверхности твердого тела. [c.426]

    Когда жидкость или раствор приходит в контакт с твердой поверхностью, происходит адсорбция. Твердое тело обычно называется адсорбентом, а адсорбированный слой адсорбатом. Различают два типа адсорбции. При малом взаимодействии адсорбента с адсорбатом явление называют физической адсорбцией. Остаточные силы твердой поверхности первоначально адсорбируют мономолекуляр-ный слой, который будучи более упорядоченным, чем в объеме жидкости, простирает силы притяжения на несколько последующих молекулярных слоев жидкости. Таким образом, физическая адсорбция при температурах ниже критической температуры жидкости распространяется на несколько молекулярных слоев. Если атомы, лежащие на твердой поверхности, и, атомы адсорбата могут взаимно насыщать свободные валентные силы друг друга, то происходит химическая адсорбция или хемосорбция. В противополож- [c.64]

    Наблюденные тепловые эффекты слишком значительны и не могут быть объяснены лишь адсорбцией, как результатом действия сил когезии. Происходит более интенсивное взаимодействие адсо )-бированных молекул с поверхностью адсорбента, по-видимому, с участием валентных сил, т. е. химических. [c.95]

    Несоответствие между физической и химической адсорбцией характеризует понятие о первичной и вторичной адсорбции первичная адсорбция имеет место на активных адсорбентах и зависит от валентных сил, вторичная происходит на более слабых адсорбентах и зависит от более слабых валентных сил. [c.116]

    Унитарные представления о природе химических сил были развиты Кекуле. Он назвал эти силы насыщаемыми силовыми лучами , которые можно символически обозначать крючками или черточками (Эрленмейер). Каждому атому присуща своя атомность , или валентность, которые указывают на количество его связей устойчивыми являются те молекулы, в которых не осталось неиспользованных валентностей. Характер валентных сил физика того времени еще не могла объяснить, но, тем не менее, с помощью этих представлений уже можно было описывать природу и превращения органических молекул. Едва ли какие-нибудь другие теории в естествознании были столь плодотворны для изучения и систематики колоссального экспериментального материала, как теория валентности Кекуле. Именно поэтому она долгое время находила почти неограниченное применение. [c.23]

    В ней пунктиром обозначены парциальные валентные силы . [c.44]

    Для объяснения явлений адсорбции существуют различные теории. Одна из них — физическая теория, согласно которой природа адсорбционных сил чисто физическая и связана с проявлением межмолекулярных сил. Согласно химической теории ненасыщенные силы адсорбционных поверхностных слоев являются химическими (валентными) силами. [c.347]

    Адсорбция вызывается валентными силами или силами остаточной химической валентности. [c.347]

    СОЕДИНЕНИЯ ВКЛЮЧЕНИЯ — вещества, занимающие промежуточное положение между твердыми растворами внедрения и истинными химическими соединениями. С. в. образуются внедрением одной или нескольких молекул одного вида в полость молекулы или кристаллической решетки другого. Валентные силы при этом не действуют, но молекула включения не может покинуть своего места, т. е. не имеет выхода во внешнюю среду потому, что она окружена со всех сторон молекулами включающего ее ве- [c.231]


    В кристаллах веществ, молекулы которых состоят из атомов двух видов, может быть различное взаимное расположение атомов. Атомы двух видов могут располагаться совершенно беспорядочно по отношению друг к другу или же строго чередуясь (рис. 4.10). Для большинства таких веществ характерно именно второе расположение атомов. Например, в кристалле иодоводорода Н1 иодид-ион по размерам значительно превосходит ион водорода и кристаллическая решетка, по-видимому, должна состоять из слоев молекул, подобных указанным на рис. 4.10, в. Обмен атомами (ионами) в отдельных узлах решетки кристалла невозможен при различных размерах атомов. В кристалле фтороводорода размерный фактор делает вероятным обмен между ионами и Н+, однако этого не происходит, так как ион водорода обладает значительными валентными силами, оставшимися не использованными полностью после взаимодействия с атомом фтора, и за счет этих сил (водородная связь) каждый ион водорода окружен фторид-ионами. Поэтому в кристаллической решетке веществ типа галогенидов при абсолютном нуле проявляется максимальный порядок в расположении атомов и 5°о=0, что и подтверждается экспериментально. [c.170]

    Если кристалл состоит из двухатомных молекул, атомы которых близки по размерам, и при образовании молекулы валентные силы каждого атома полностью затрачиваются на формирование связи с другим атомом, дополнительное взаи- [c.170]

    Указанные особенности сил химических связей обусловлены тем, что в их образовании принимают участие электроны, движение которых подчиняется законам квантовой механики. Значит, объяснить особенности валентных сил можно только на основе законов квантовой механики. [c.69]

    МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ — взаимодействие двух элек-тронейтральных молекул, вызываемое силами притяжения или отталкивания. Межмолекулярные силы притяжения, называемые иногда силами Ван дер Ваальса, много слабее валентных сил, но именно М. в. обусловливает откло нения от законов идеальных газов, переходы от газообразного состояния к жидкому, существование молекулярных кристаллов, явления переноса (диффузия, вязкость, теплопроводность), тушение люминесценции, уширение спектральных линий, адсорбции и др. М. в. всегда представляет собой первую стадию элементарного акта химической бимолекулярной реакции. При больших расстояниях между молекулами, когда их электронные оболочки не перекрываются, преобладают силы притяжения при малых расстояниях преобладают силы отталкивания. Короткодействующие силы имеют ту же природу, что и силы химической (валентной) связи и возникают при условии, когда электронные оболочки молекул сильно перекрываются. Частным случаем М. в. является водородная связь. М. в. определяет агрегатное состояние вещества и некоторые физические свойства соединений. [c.157]

    Уильям Джексон Поуп (1870—1939) продемонстрировал, что трехмерную модель можно распространить также на атомы серы, селена и олова, а несколько позднее швейцарский химик Альфред Вернер (1866—1919) добавил к этому списку кобальт, хром, родий и ряд других металлов. (Начиная с 1891 г. Вернер занимался разработкой координационной теории, которая позволила бы объяснить свойства некоторых необычных неорганических соединений . Согласно этой теории, кроме главных валентных сил имеются еще и силы побочной валентности. Первоначально считалось, что они резко отличаются от основных валентных сил, но впоследствии выяснилось, что существенного различия между ними не существует. [c.89]

    При общей обработке данных нельзя воспользоваться теми упрощениями, которые возможны благодаря симметрии молекулы. Химическая интуиция говорит о том, что большинство силовых постоянных фактически должны равняться нулю, так как в молекуле существет ны только те межатомные силы, которые сохраняют постоянными расстояния между двумя атомами, соединенными химической связью, и углы меноду связями одного атома. Поэтому почти во всех случаях используется простое выражение, называемое потенциальной функцией валентных сил, для которого внутренними координатами являются изменение длины связи и угла между связями. [c.298]

    Наприлюр, потенциальная функция валентных сил для трехатомной молекулы АВС (см. рис. 2), которая в наиболее общем случае включает шесть постоянных, может быть записана в виде [c.298]

    Любая молекула состоит из двух или более атомов, связанных между собой различными электрическими силами. Атомы в свою очередь могут рассматриваться как сочета ше ядер и электронов. Хорошо известно, что молекулы не являются жесткими структурами, т. е. в, них существуют колебания атомов друг относительно друга около некоторого положения равновесия. Эти колебания могут происходить параллельно направлению валентной силы, связывающей два атома, в результате чего изменяется расстояние между ними. Такие колебания называются колебаниями валентного типа. Колебания атомов в многоатомной молекуле в направлении, перпондикуляриом к направлению валентной силы, вызывают изменения валентного угла. Такие колебания принадлежат к деформационному типу. Существуют также вибрационные частоты, возникающие в результате сложного движения, влияющего на первоначальный скелет молекулы или на часть этого скелета. Они могут включать как валентные, так и деформационные колебания. [c.315]

    В конденсационных структурах частнцы связываются валентными силами, как, например, в эластично-хрупких студнях кремнезема. [c.527]

    В отличие от дальнодействующих сил о силах, возникающих на малых расстояниях, имеется сравнительно мало данных. Несмотря на то что природа этих сил более или менее ясна, теоретические расчеты оказываются либо неточными, либо слищком сложными для их практического использования. В случае когда два атома или две молекулы находятся настолько близко друг к другу, что их электронные оболочки перекрываются, в соответствии с принципом Паули происходит их искажение. Аналогичный эффект вызывается и кулоновскими силами, однако он принадлежит к числу вторичных эффектов. Если атомы первоначально имели заполненные электронные оболочки, то после сближения электроны препятствуют сближению атомов друг с другом, что приводит к увеличению плотности заряда в области, расположенг ной между атомами. В результате заряды ядер экранируются, вследствие чего будет происходить взаимное отталкивание атомов. Если атомы не имели заполненной электронной оболочки, то увеличение плотности заряда между ними может происходить за счет спаривания электронов, приводящего к образованию химической связи. Таким образом, короткодействующее силы отталкивания атомов и молекул имеют ту же природу, что и химическая связь. Короткодействующие силы часто называют перекрывающимися или валентными силами. Они называются также обменными силами из-за применяемого обычно математического метода, в соответствии с которым строится приближенная волновая [c.205]

    Иониты представляют собой сшитые полимеры, имеющие в молекуле специфические функциональные группы, способные посылать в раствор как катионы, так и анионы. В зависимости от характера генерируемых ионов смолы обладают свойствами либо полимерных твердых кислот (катиониты), либо полимерных твердых оснований (аниониты) [3, 236]. Полимерная смола состоит из каркаса, связанного валентными силами и обладающего определенным зарядом, который компенсируется зарядом ионов противоположного знака (противоионов). Противоионы не закреплены в определенных местах полимерной молекулы. При погружении смолы в раствор противоионы могут перейти в него, а в ионит войдут другие ионы из раствора и примут участие в компенсации заряда каркаса [236]. Например, катионообмен можно охарактери- [c.174]

    При определении формул строения органических соединений очень важно и другое свойство углерода, заключающееся в том, что все четыре валентности атома углерода одинаковы и равноценны между собой. К такому выводу можно прийти уже потому, что никогда не удается получить моно- и дизамещенных производных метана в двух или нескольких формах, а это, очевидно, было бы возможно, если бы четыре атбма водорода в молекуле метана не были бы равноценны, т. е. были бы связаны посредством различных валентных сил.  [c.14]

    Смачивание твердой поверхности. Уравнение Дюпре (75) для энергии адгезии так же, как и его модификация, предложенная Гаркинсом (75а), основано на предположении, что поверхностное натяжение твердого вещества постоянно н не зависит от типа смачивающей жидкости. Если этот материал разломить, ионы на вновь образовавшейся поверхности имеют асспметричное расположение электронов, что обусловливает образование направленных валентных сил, т. е. эта поверхность поляризована.. Силовое поле этих ионов будет располагать их в определенном порядке, зависящем от окружающей среды. [c.66]

    Адсорбция твердыми веществами, по И. Лэнгмюру [17], происходит за счет валентных сил, которыми всегда обладает любая поверхность в силу ее ненасыщенности. Однако за счет химических сил с поверхностью связан лишь первый слой молекул монослой), следующие же слои, образующиеся над поверхностью в виде миниатюрной атмосферы, удерживаются только силами притяжения. Адсорбция монослоем есть, таким образом, явление химическое, и потому она названа хемосорбцией. Поэтому хемосорбция принципиально отличается от обычной, или вандерваальсовой, адсорбции. [c.103]

    Как уже указывалось (стр. 93), по современным представлениям следует различать 1) обычную адсорбцию за счет сил притяжения и 2) хемосорбцию за счет химических валентных сил. Несмотря на то, что между обоими типами адсорбции нельзя провести резкой грани, во многих отношениях они значительно различаются. При обычной адсорбции газ или пар конденсируется по всей поверхности многослойно, выделяющаяся при этом теплота адсорбции невелика и составляет 2000—8000 тл1г-мол, и процесс обратим. В случаях хемосорбции образуется мономолекулярный слой, занимающий обычно не всю поверхность, а локализующийся на наиболее активных участках. Остальная часть поверхности при этом также сорбирует, но чаще всего лишь физически. Теплота хемосорбции может доходить до 200 000 кал г-мол, причем десорбция протекает с большим трудом, и часто вещество десорбируется химически измененным. При хемосорбции получаются настоящие двумерные химические соединения, поэтому их часто называют двумерными. Для образования таких соединений необходима некоторая энергия активации. [c.116]

    Для проявления биологической активности некоторые белки должны сначала образовать макрокомплекс, состоящий из нескольких третичных структур белковых субъединиц, которые связаны вторичными валентными силами (ионное притяжение, водородные связи). Подобные способы пространственной организации нескольких полипептидных субъединиц - это четвертичная структура белка, которая определяет степень ассоциации третичных структур в биологически активном материале. Например, белком с четвертичной структурой является гемоглобин, который состоит из четырех субъединиц (клубков) миогло-бина - дэух молекул а-гемоглобина, каждая из которых содержит гем. [c.272]

    Иногда под молекулой понимают любые скопления атомов, хотя более точно — это нейтральные частицы данного вещества. Их стабильность является следствием образования между атомами химических связей. Квантовая механика впервые предложила рещение вопроса о природе химической связи. Основа такого подхода заложена в специфике микрообъектов, к которым классические законы применимы далеко не всегда. Например, ни одно из известных взаимодействий — электрическое, магнитное или гравитационное — в применении к микрообъек там не обладает свойством наеьщаемости, т. е. не зависит от числа взаимодействующих тел. С другой стороны, насыщаемость валентных сил — хорощо известный факт, который, в частности, проявляется в том, что стабильная молекула имеет состав СН4, а частицы СН2, [c.172]

    Если представить себе, что атом углерода, как впервые предполо-нсили Лс Бель и Вант-Гофф, расположен в центре правильного тетраэдра и имеет 4 валентности, направленные к углам тетраэдра, то угол между этими направлениями валентных сил составит 109°28. Если же два атома углерода, затрачивая по две единицы валентности каждый, соединятся между собой, образуя этиленовое производпое, то каждая [c.303]

    Фазовые контакты. Говоря о <ифазовому> контакте, мы имеем в виду непосредственный контакт частиц на площади, заметно превышающей молекулярные размеры, обусловленный теми же (валентными) силами, которые действуют в объеме данных частиц. Такие относительно прочные и механически необратимые контакты возникают в разных физико-химических условиях. Назовем некоторые из них. [c.306]

    Силы химических связей (валентные силы) отличаются от известных в физике электростатических и магнитных сил, а также сил тяготения двумя важнейшими особенностями — целочисленностью и вытекающей из нее насыщаемостью и направленностью валентных сил. Целочислениость заключается в том, что силы, действующие между атомами в молекуле, могут быть охарактеризованы валентностью, которая имеет только целочисленные значения. [c.68]

    В узлах молекулярных кристаллических решеток находятся молекулы, которые связаны друг с Другом слабыми межмолеку-лярными силами. Такие кристаллы образуют вещества с ковалентной связью в молекулах. Веществ с молекулярной кристаллической решеткой известно очень много. Это твердые водород, хлор, диоксид углерода и другие вещества, которые при обычной температуре газообразны. Кристаллы больщинства органических веществ также относятся к этому типу. Молекулярные кристаллические вещества характеризуются значительной летучестью, твердость их невелика, они легкоплавки. Особенно низкие температуры плавления и кипения у тех веществ, ма1е-кулы которых неполярны. Кристаллы, образуемые благородными газами, также следует отнести к молекулярным, состоящим из одноатомных молекул, поскольку валентные силы в образовании этих кристаллов роли не играют, и связи между частицами имеют тот же характер, что и в других молекулярных кристаллах. [c.155]


Смотреть страницы где упоминается термин Валентные силы: [c.86]    [c.323]    [c.202]    [c.45]    [c.978]    [c.69]    [c.99]    [c.254]   
Адсорбция газов и паров Том 1 (1948) -- [ c.14 ]

Адсорбция газов и паров (1948) -- [ c.14 ]




ПОИСК





Смотрите так же термины и статьи:

Валентность Ван-дер-ваальсовы силы

Валентные силы сцепления

Валентные силы, схема модели

Валентные силы, электрическая природа

Неэлектростатические валентные силы

Полимеры, разрушение и силы главных валентностей

Силы взаимодействия влияние концентрации и валентности ионов

Силы диполь-дипольные Двойные кристаллы Полярные связи Валентность Силы ван-дер-Ваальса

Теория валентных связей жизненной силы

Электростатические валентные силы

Эффекты изменения валентных углов и силы соседних связей



© 2025 chem21.info Реклама на сайте