Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Агрессивные хромовая

    Основные трудности ведения процесса хромирования в проточном электролите связаны с исключительно высокой агрессивностью хромовой кислоты. Поэтому всегда имеется опасность разрушения трубопроводов и подающего электролит насоса, усугубляющаяся с увеличением скорости протекания электролита. Успех применения проточного хромирования определяется прежде всего использованием насоса и трубопроводов, изготовленных с применением кислотоупорных материалов, а также рациональной конструктивной разработкой установки в целом. [c.75]


    При мытье посуды надо обязательно надевать резиновые перчатки, а в случае использования агрессивных жидкостей, особенно хромовой смеси, концентрированных щелочей и т. п.— защитные очки или маску. [c.25]

    При электроосаждении хрома выделяется много водорода, пузырьки которого увлекают с собой в атмосферу часть электролита, распыляя его в виде тумана, поэтому необходимо, чтобы была обеспечена надежная защита рабочих от вредного действия хромовой кислоты. Для этого ванны снабжаются мощной бортовой вентиляцией. Большой интерес представляют холодные электролиты, агрессивность которых значительно меньше, чем горячих электролитов. Кроме того, выход металла по току в таких электролитах выше. [c.421]

    Как известно, при нормальном давлении элементарный углерод не плавится. В инертной атмосфере его термостойкость достигает 3000°С (7 субл = 3650°С) кроме того, он отличается исключительной стойкостью к действию химически активных веществ. Углерод инертен к действию фосфорной, соляной, серной и органических кислот, а также таких агрессивных газообразных веществ, как хлористый водород и диоксид серы. Графит подвержен действию только сильных окислителей, таких как азотная и хромовая кислоты, а такЛ Се газообразного фтора и паров серы при высокой температуре [1]. [c.262]

    Цинк и кадмий часто хроматируют в растворах хромовой кислоты или хроматов. Хроматированный цинк в атмосфере с низкой степенью коррозионной агрессивности противостоит в течение определенного времени образованию белых продуктов коррозии, так называемой белой ржавчины. [c.74]

    Титан и его сплавы находят все большее применение как конструкционные или облицовочные материалы, обладающие высокой коррозионной стойкостью во многих сильных агрессивных средах (азотной кислоты, нитритов, нитратов, хлоридов, сульфидов, фосфорной и хромовой кислот, органических кислот и мочевины). Однако титан разрушается в серной, соляной и плавиковой кислотах, а также в азотной кислоте, содержащей оксиды азота. [c.13]

    Испытания пентапласта в агрессивных средах катализаторных производств показали его стойкость при 20 °С в смеси соляной и азотной концентрированных кислот (I 1), 35%-ной хромовой кислоте, 35%-ном нитрате хрома при 20—60 °С в 30%-ной серной кислоте, 70%-ной серной кислоте, влажной смеси окислов азота, 30%-ной азотной кислоте, растворах нитратов редкоземельных элементов (от слабых до концентрированных), концентрированном медноаммиачном рас- [c.272]


    Никель-хромовые сплавы известны как жаростойкие материалы. Одновременно они обладают коррозионной стойкостью и в агрессивных средах. Эти сплавы так же как и нержавеющие стали устойчивы в окислительных средах, например, в азотной кислоте. [c.210]

    С Мо, , КЬ и Л тантал образует непрерывный ряд твердых растворов. Сплавы тантала имеют повышенные прочностные характеристики. Как конструкционный материал тантал находит применение в химическом машиностроении. Из него изготавливают теплообменную аппаратуру для получения брома из смеси хлора и брома, для дистилляции соляной и азотной кислот из неочищенного сырья, при получении бромида этилена и хлористого бензола, при регенерации серной кислоты. Из тантала изготавливают нагреватели, работающие в особо агрессивных средах, например, в смеси хромовой и серной кислот, при дистилляции пероксида водорода. В ряде случаев тантал используют для плакировки аппаратуры из углеродистой стали. [c.222]

    Если заранее неизвестно, какой метод очистки наиболее эффективен в данном случае начинать надо с наиболее простого и доступного — мытья горячей или мыльной водой Прибегать к использованию более агрессивных и опасных моющих средств — органиче ских растворителей, концентрированных кислот и щело чей, хромовой смеси — следует только в тех случаях, когда загрязнения не отмываются водой [c.70]

    Плитки стойки при воздействии большинства агрессивных веществ, в том числе кислот, солей, многих органических соединений, исключая сильные окислители (концентрированная азотная и хромовая кислоты, анодно выделяющийся кислород и т. д.). [c.247]

    В отсутствие кислорода и при наличии агрессивных анионов, например С1 , может быстро возникнуть серьезный питтинг хромового покрытия. На покрытии становятся видимыми зеленые пятна никелевых солей, после чего появляется ржавчина. [c.154]

    Пентапласт стоек к большинству органических растворителей, слабым и сильным щелочам, слабым и некоторым сильным кислотам на него действуют только сильные окисляющие кислоты, такие, как азотная и дымящая серная [32]. При этом воздействие агрессивных сред значительно меньше влияет на изменение механических свойств пентапласта, чем на изменение свойств фторопласта-3. Пентапласт более стоек, чем полипропилен, к концентрированным минеральным кислотам (30%-ной хромовой и 60%-ной серной) и органическим кислотам (75%-ной уксусной) и особенно к органическим растворителям кетонам, хлорсодержащим и ароматическим углеводородам. Такая повышенная химическая стойкость пентапласта обусловлена его строением — прочностью связи хлорметильных групп с углеродом основной цепи и компактностью его кристаллической структуры. Удачное сочетание физико-механических свойств с повышенной химической стойкостью выгодно отличает пентапласт от других термопластичных материалов. Пленки пентапласта практически непроницаемы для кислорода и азота по сравнению с полиэтиленом они менее газопроницаемы для паров воды и двуокиси углерода, [c.169]

    Едкие (агрессивные, вызывающие химические ожоги) вещества (кислоты — соляная, азотная, серная, фтористоводородная и хромовый ангидрид, а также концентрированные растворы щелочей — едкий натр, едкое кали и растворы аммиака), попадая на кожу, вызывают ожоги, напоминающие термические. Щелочь и в сухом виде при попадании на кожу может вызвать ожоги. [c.714]

    Образующийся слой не должен иметь пор или трещин [39]. Из рис. 12.18 (стр. 619) видно, что рабочие условия, при которых осаждается хром, неблагоприятны для коррозионной стойкости. Во всяком случае, хромовые покрытия не следует применять там, где может встретиться кислая агрессивная среда с pH 3 и где хром контактирует с другим металлом. Хром в этих условиях активируется и растворяется [40]. [c.702]

    Коррозионностойкие стали аустенитного класса в растворах хромовой кислоты достаточно устойчивы, но с повышением температуры они заметно корроди-руют. Добавки хлоридов, а также плавиковой, кремнефтористоводородной или серной кислот повышают агрессивность хромовой кислоты по отношению к металлам. Серый чугун под действием хромовой кислоты с этими примесями разрушается со скоростью до 3 мм1год. Хромистые стали достаточно устойчивы в растворах хромовой кислоты концентрацией до 10%. С повышением концентрации и температуры эти стали разрушаются, теряя в весе до 240 Г1м в сутки. [c.535]

    Никель чувствителен к агрессивным воздействиям, особенно в промышленной атмосфере. Из-за потускнения металла ве дедст-вие образования пленки основного сульфата никеля, уменьшающего зеркальный блеск поверхности, покрытия постепенно теряют отражательную способность [4]. Для того чтобы уменьшить потускнение, на никель электроосаждением наносят очень тонкий (0,0003—0,0008 мм) слой хрома. Отсюда возник термин хромовое покрытие , хотя в действительности оно в основном состоит из никеля. Оптимальные условия защиты достигаются, если в покровном хромовом слое образуются микротрещины. Чтобы получить этот эффект, в гальванически,е ванны для электроосаждения хрома вводят соответствующие добавки. Тонкий никелевый слой, осажденный из электролита, содержащего блескообразователи (обычно соединения серы), в свою очередь наносится на вдвое или втрое более толстый матовый слой, электроосажденный из обычной ванны никелирования. Многочисленные трещины в хроме способствуют инициации коррозии во многих местах поверхности, что уменьшает в конечном итоге глубину коррозионных разрушений, которые в противном случае протекали бы в нескольких отдельных точках. Блестянщй никель, содержащий небольшие количества серы, является анодом по отношению к нижнему слою никеля, в котором серы меньше, и поэтому выступает в качестве протекторного покрытия. Развитие любого питтинга, образующегося под хромовым покрытием, происходит в основном вширь, а не за счет роста в глубь никелевых слоев. Таким образом, предотвращается коррозия основного металла. Система многослойных покрытий обладает более высокой защитной способностью, чем однослойные хромовые или никелевые покрытия той же толщины [51. [c.234]


    Особенно эффективное средство очистки стекла и фарфора — смесь бихромат+серная кислота, так называемая хромовая смесь, которую готовят растворением 20—30 г тонкоизмельченного ЫагСггО или К2СГ2О7 в 1 дм конц. Н2304. Очищающая способность этой очень агрессивной жидкости красно-коричневого цвета основана преимущественно на ее окислительном действии. Безводная хромовая смесь может реагировать с органическими веществами даже со взрывом, о чем нужно помнить ири обработке сосудов с неизвестным содержимым. При разбавлении хромовая смесь теряет свои свойства, поэтому перед ее употреблением надо дать стечь каплям воды с очищаемой посуды, предварительно вымытой водой. Толстостенные сосуды с хромовой смесью лучше всего держать закрытыми. Если моющая смесь окрашена в зеленый цвет, значит, хром восстановлен [Сг(У1)- Сг(П1)] такая смесь уже непригодна для работы. Для очистки шлифов от находящейся на них смазки вместо хромовой смеси лучше использовать органические растворители, такие, как бензин, бензол или тетрахлорид углерода. [c.482]

    Сплавы хрома с молибденом, ванадием и ниобием имеют износостойкость в 1,5—2.0 раза большую, чем у обычных хромовых покрытий. При высокой и.чкосостойкости они также высоко пластичны, что позволяет использовать покрытия этими сплавами при работе в жестких ус-лоБиях бо.чьших динамических нагрузках, в узлах трения, в агрессивных средах [c.180]

    Срок службы антикоррозионной бумаги УНИ зависит от ряда факторов, наиболее важными из которых являются тщательность подготовки поверхности металлоизделия к консервации, соответствие упаковочного материала нормативно-технической документации (количество ингибитора в бумаге, физико-механические показатели материала, его влагопрочность и паропроницаемость), наличие барьерного покрытия и его вид, а также условия последующего хранения и транспортировки. В табл. 27 представлейк средние значения сроков хранения упакованных в антикоррозионную бумагу УНИ металлоизделий в зависимости от вида барьерного покрытия и степени коррозионной агрессивности атмосферы согласно СТ СЭВ Коррозия металлов. Классификация коррозионной агрессивности атмосферы (легкие сроки хранения — Л, средние — С, жесткие — Ж, очень жесткие — ОЖ), применительно к стали и чугуну, стали с неметаллическим неорганическим покрытием, а также стали и чугуну с металлическим покрытием (никелевым, хромовым — без подслоя меди). [c.108]

    В соответствии с рекомендациями покрытия из этих лакокрасочных материалов можно эксплуатировать в пределах от 213 до 373К в атмосфере, содержащей такие агрессивные газы, как хлор, двуокись серы, двуокись азота, хлористый водород, аэрозоль серного ангидрида, озон они стойки к растворам азотной, серной, фосфорной и хромовой кислот, а также едкого натра. [c.35]

    Пассивирующие грунтовки чаще всего содержат хроматные пигменты — соли хромовой кислоты хроматы стронция, бария, кальция, цинка, свинца. Хроматы являются самыми распространенными пассиваторами. Даже при незначительных концентрациях хроматов в электролите металлы переходят из активного в пассивное состояние. Это можно проиллюстрировать на примере пассивации стали (рис. 8.1). Даже в агрессивном электролите (0,1 н. N82804) можно полностью подавить коррозионный процесс, если ввести в него хромат определенной концентрации, получившей название защитной. Потенциал стали при этом сильно смещается в сторону положительных значений (на 0,5—0,6 В), что может служить косвенным доказательством сильных пассивирующих свойств хроматов. [c.126]

    Применение защитных покрытий. Среди защитных покрытий, способных повыщать коррозионную стойкость элементов установок, работающих в агрессивных продуктах сгорания топлива, наиболее освоены хромовые. Используются различные технологические процессы для нанесения защитных слоев хрома на поверхность металла, но в большей мере, чем другие, разработан и применяется в промышленных масштабах вакуумно-диффузионный способ. [c.242]

    Металлический хро.м благодаря высокой температуре плавления и стойкости к воздействию окислителей и агрессивных сред широко применяют в качестве легирующих добавок к металлам. Многие хромовые стали отличаются высокой твердостью, прочностью и. пластичностью [388] их употребляют для изготовления инструментов и различных частей машин. Большое количество хрома используют для хромирования [388] специфические свойства силицидов хрома используют при раскислении сталей [91]. Соединения хрома применяют в лакокрасочной, химической, нефтеперерабатывающей, парфюмерной, фармацевтической и других отраслях промышленности [2. Старейши.м потребителем соединений хрома является текстильная промышленность. Большие количества бихромата натрия и хромовых квасцов расходуются [c.8]

    Применяемые химические реактивы должны соответствовать определенным требованиям в отношении чистоты, и в ряде случаев полезно использовать реактивы, специально проверенные хроматографически. При приготовлении некоторых реактивов требуется большая осторожность, и получение их должно проводиться только соответственно подготовленным персоналом. В качестве примера здесь можно указать на опасность отравления при работе с бромцианом (реактив № 88), а также на взрывоопасность диа-зотированной сульфаниловой кислоты (реактив № 37) и реактива Толленса (реактив № 137). В случае агрессивных растворов для опрыскивания (хромовая смесь, царская водка, хлорид олова и т. д.), часто применяемых в ХТС, следует рекомендовать заш итные очки. Это же относится и к рассматриванию хроматограммы в проходяш ем УФ-свете (опасность взрыва ртутной лампы). [c.476]

    Фторопласт-3 отличается высокой химической стойкостью. Он стоек (не изменяется совсем или набухает меньше, чем на 1%) к действию многих агрессивных сред кислот [азотной, плавиковой, серной, олеума (до 65%-ного), соляной, фосфорной, хлорной, хромовой, царской водки], растворов щелочей, окислителей (перекиси водорода, озона, дымящей азотной кислоты, хромовой смеси, перманганата калия), брома, газообразного фтора и хлора. Как и фторопласт-4, он раз-рущается при действии расплавленных щелочных металлов или их паров при высокой температуре, [c.181]

    Бутылки с концентрированными неральными кислотами — соляноЯ, азотной, серной, а также с хромовой смесью на основе концентрированной серной кислоты — следует держать раздельно друг Ог друга в Вытяжном шкафу на керамиче ских или эмалированных поддонах с леском или в фарфоровых стаканах Емкость бутылок с кислотами е должна превышать 5 л Если в Лаборатории имеется такая возможность, для хранения кислот и других вы деляющих агрессивные пары реактивов необходимо выделить отдельный Вытяжной шкаф В крайнем Слу чае допускается хранение кйсЯот в рабочих вытяжнш шкафах, лучше на специальных полках Но и тог а нельзя загромождать вытяжной шкаф, при проведении работ с повышенной пожароопасностью, иапрнмер при перегонке ЛВЖ, емкости с кислотами следует времен но убрать [c.27]

    В очень тяжелых условиях эксплуатации находится аппаратура, работающая внутри вытяжных шкафов,— сушильные шкафы, электроплитки, ЛАТР, электромо торы В ходе реакций или через неплотности в укупорке в объем вытяжного шкафа могут выделяться чрезвы чайно вредные для электрооборудования кислые газы и пары — оксиды азота, галогеноводороды, оксид серы(П) а из хромовой смеси — летучий оксид хро ма(ПЦ К быстрому выходу из строя электрических приборов приводят брызги электролитов, органических растворителей, агрессивных жидкостей, а также водяные пары, в больших количествах образующиеся, на пример, при использовании кипящих водяных бань Опасность поражения людей электрическим током при работе в вытяжных шкафах повышается в связи с возможностью одновременного прикосновения к ме таллическим корпусам электрооборудования и зазем ленным водопроводным и газовым коммуникациям Постоянный источник опасности в химических ла бораториях — самодельные электроприборы Посколь ку промышленность не обеспечивает полностью по требности химиков в оборудовании, было бы нецелесо образно запрещать самостоятельное изготовление не [c.95]

    Первая лабораторная работа — мытье химической посуды. Нужно показать будущим лаборантам правильные приемы пользования ершами и щетками для мытья посуды. Посуду, выданную учащимся в лаборатории неорганической химии, достаточно вымыть теплой водой. Если не удается отмыть ее теплой водой, можно применить мыло или хромовую смесь. Хромовая смесь (5%-ный раствор двухромового кислого калия в концентрированной серной кислоте) — эффективное моющее средство. Чтобы вымыть колбу, в нее наливают хромовую смесь приблизительно на четверть объема осторожно поворачивая сосуд, смачивают стенки взяв сосуд за нижнюю часть и продолжая осторожно поворачивать его (чтобы полностью смочить верхнюю часть стенок и горльГшко колбы), выливают хромовую смесь в склянку, где она хранится. Колбе дают постоять две-три минуты, а затем промывают ее водой. Следует помнить, что хромовая смесь — агрессивная жидкость попадание ее на кожу может причинить сильный ожог. Если хромовая смесь попала на кожу, необходимо пораженное место обмыть сначала сильной струей воды, а потом — раствором соды. [c.34]

    Свойства вулканизатов. Механич. свойства вулканизатов X. к. определяются типом полимера (табл. 1). Кристаллизация X. к. обусловливает высокую прочность при растяжении ненаполненных вулканизатов на их основе. Наиболее важные специфич. свойства резин из X. к.— масло-, бензо-, озоно-, свето-, тенло-и огнестойкость. Резины сравнительно стойки в нек-рых к-тах (напр., борной, соляной, разб. серной), щелочах, однако под действием азотной, хромовой, конц. серной к-т, а также сероуглерода, серного ангидрида, перекисей (напр., перекиси водорода) и газообразного хлора они разрушаются. Характеристики стойкости резин в нек-рых агрессивных средах и их сопротивления озонному старению приведены в табл. 2, 3. [c.417]

    В табл. 27, составленной по ряду литературных источников, сопоставлены значения коррозионной устойчивости титана (ВТ-1) и сплава Ti0,2Pd в ряде характерных агрессивных сред. Из этих данных следует, что сплав TiO,2Pd имеет большое преимущество перед чистым титаном в кислых неокислительных средах. В окислительных средах (HNO3, Fe la, хромовая кислота, влажный хлор), а также в нейтральных хлоридах (растворы Na l, морская вода) сплав TiO,2Pd и чистый титан имеют примерно одинаковую стойкость. В концентрированных кислотах и, особенно, при повышенных температурах, сплав TiO,2Pd, хотя и имеет некоторое преимущество перед титаном, но также оказывается недостаточно стойким. [c.249]

    Водомаслорастворимые ингибиторы коррозии обладают хорошими Еодовытесняющим и водоудерживающим свойствами, быстродействием и способностью тормозить коррозию на ранних стадиях, но смываются водой и не могут использоваться для наружной консервации техники при хранении ее на открытых площадках. Их недостаток — низкая термостабильность и коррозионная агрессивность к цветным металлам. К таким ингибиторам относятся имидазолины и их производные (ИКБ-2), продукты взаимодействия непредельных и предельных жирных кислот, нафтеновых кислот, альдегидов, кетонов, эфиров и различных аминов продукты оксиэтилирования или оксипропилирования жирных кислот, аминов, амидов и их смеси соли борной, хромовой, азотистой, фосфорной, фосфиновой, алифатических или ароматических аминов и амидов соли нефтяных или синтетических сульфокислот аммония, калия, натрия и некоторых аминов четвертичные аммониевые соединения (ДПХ, КПИ-1, АПБ, ката- [c.584]

    Послойное осаждение хромовых покрытий осуществляют при нестационарном режиме электролиза в сульфатно-кремнефторидном электролите на пульсирующем токе при температуре 55. .. 65 0 и катодной плотности тока 50. .. 100 А/дм . Промежуточный слой получают при коэффициенте пульсации 45. .. 65 %, внешний (блестящий) — при 1. .. 5 %. Режимы хромирования на выпрямленном токе с коэффициентом пульсации 1 % разработаны для получения защитно-декоративных покрытий, устойчивых в агрессивных средах. [c.687]

    Изделия из тройных сополимеров могут эксплуатироваться в некоторых агрессивных средах, например в конц. Н2504, в 20%-ном растворе гипохлорита натрия, в щелочных растворах, однако они не выдерживают действия хромовой и концентрированной азотной кислоты. Сополимеры также отличаются большой влагостойкостью при повышенной температуре и устойчивостью к действию водяного пара. [c.255]

    В нефтеперерабатывающей и нефтехимической промышленности возможны поражения глаз при попадании в них агрессивных и едких веществ (кислот, щелочей, раздражающих газов — аммиака, хлора и т. д.), могут быть и механические травмы глаз мелкими твердыми частицами (катализаторной пылью, острыми осколками стекла в нефтезаводских лабораториях, кусочками металла при ремонтных работах). Иногда механическое повреждение глаза усиливается химическим воздействием попавшего в глаз вещества в качестве примера можно привести действие хромового катализатора, нанесенного на алюмосиликатный носитель. При производстве электросварочных работ могут иметь место серьезные повреждения глаз (электрофтальмия) не только у сварщиков, но и у всех, кто без защитных средств даже короткое время наблюдал за сваркой. [c.56]

    Отличительной особенностью смазочных масел, гидравлических жидкостей и растворителей на основе фторуглеродов является их необыкновенно высокая термическая и химическая стойкость, обусловленная отсутствием атомов водорода, большой прочностью связи —Р и экранированием углерод-углеродных связей небольшими по размеру атомами фтора. Они не реагируют с такими сильными реагентами, как хромовая и азотная кислоты, нитрующая смесь, хлор и щелочи, и индифферентны к действию кислорода. Их термическое разложение начинается только выше 350 °С, и они могут работать длительное время при 250—300 °С в очень агрессивных средах, что совершенно недостижимо для углеводородных масел. Недостатком фторутлеродных смазочных масел является сильная зависимость их вязкости от температуры и сравнительно высокая температура застывания. Добавление различных присадок позволяет несколько улучшить эти показатели. [c.221]


Смотреть страницы где упоминается термин Агрессивные хромовая: [c.177]    [c.141]    [c.19]    [c.436]    [c.315]    [c.154]    [c.103]    [c.648]    [c.367]    [c.54]    [c.367]   
Коррозионная стойкость материалов (1975) -- [ c.314 ]

Коррозионная стойкость материалов Издание 2 (1975) -- [ c.314 ]

Коррозионная стойкость материалов в агрессивных средах химических производств Издание 2 (1975) -- [ c.314 ]




ПОИСК





Смотрите так же термины и статьи:

Хромовая



© 2025 chem21.info Реклама на сайте