Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан и сплавы коррозионная стойкость

    Металлы и сплавы, коррозионная стойкость которых обусловлена наличием на их поверхности пассивирующей пленки (коррозионностойкие стали, алюминий и его сплавы, медноникелевые сплавы, титан и т. д.), подвержены щелевой коррозии. Степень поражения металлов и сплавов щелевой коррозией не всегда одинакова, она зависит от химического состава сплава (аналогично тому, как при точечной коррозии). [c.445]


    Титан — один из наиболее коррозионностойких металлов и по своей коррозионной стойкости в ряде практически важных средах он превосходит нержавеющие стали и алюминиевые сплавы. [c.66]

    Широкое применение платиновые металлы и сплавы нашли как коррозионно-стойкие материалы. Добавка 10% иридия к платине повышает ее химическую стойкость и твердость втрое. Такие сплавы обладают исключительной коррозионной стойкостью, из них делают жаростойкие тигли, выдерживающие сильный нагрев в агрессивных средах, в них выращивают кристаллы для лазерной техники. Эти сплавы применяют также для изготовления хирургических инструментов и эталонов. Малые добавки иридия к титану и хрому резко повышают стойкость их к действию кислот. [c.410]

    Титан немного тяжелее алюминия, но в три раза прочнее его к тому же титан и его сплавы обладают высокой коррозионной стойкостью, жаростойкостью. Они используются в качестве конструкционного материала в самолетостроении, ракетной технике и т. д. Этим требованиям отвечают также легкие магний-циркониевые сплавы. Цирконий почти не захватывает тепловые нейтроны, поэтому он используется в качестве конструкционного материала для атомных реакторов. Использование циркония в ядерной технике потребовало тщательного разделения циркония и гафния, так как гафний в этом случае является вредной примесью. [c.127]

    Титан и его сплавы находят все большее применение в современном машиностроении, авиастроении, судостроении, турбостроении, производстве вооружения. Особенно ценен титан как материал для частей конструкций, работающих в напряженных условиях, критерием пригодности которого является отношение прочности к весу. Титан используют, когда требуется сочетание минимального веса с высокой прочностью, термической и коррозионной стойкостью. Так, его применяют для изготовления деталей судов, самолетов, трубопроводов, котлов высокого давления, для оборудования высокотемпературных процессов в химической и других отраслях промышленности. [c.88]

    Металлический титан и сплавы на его основе. Области применения титана и его сплавов как конструкционных материалов определяются комплексом свойств, выгодно отличающих их от сплавов железа, алюминия и магния. Для них характерны высокая коррозионная стойкость, жаропрочность (сохраняют механические характеристики до 430—450°), малая плотность и высокая прочность /По прочности они превосходят некоторые нержавеющие стали, алюминиевые сплавы (в 2—3 раза), магниевые сплавы (в 5 раз). Удельная прочность (прочность, отнесенная к массе) у них наивысшая среди технических материалов. Эти свойства отвечают современным требованиям машиностроения и выдвигают титан в ряд перспективных материалов для использования во всех отраслях промышленности (табл. 60). [c.242]


    Титан добавляют в различные сплавы на основе черных и цветных металлов для повышения прочности и коррозионной стойкости. , [c.262]

    Оборудование нефтяной и газовой промышленности эксплуатируется в чрезвычайно тяжелых условиях. Долговечность и надежность работы оборудования во многом зависят от технико-экономической характеристики применяемых конструкционных материалов. К ним предъявляются очень высокие требования они должны обладать определенным комплексом прочностных и пластических свойств, сохраняющихся в широком интервале температур хорошими технологическими свойствами, не должны быть дефицитными и дорогими. Во многих случаях предъявляются высокие требования к коррозионной стойкости материала, особенно к специфическим видам разрушения — водородному охрупчиванию, коррозионному растрескиванию, межкристаллитной коррозии и др. Важное значение при выборе конструкционных материалов имеют металлоемкость и масса оборудования. Многие нефтяные и газовые месторождения расположены в отдаленных и труднодоступных районах, во многих районах намечается тенденция увеличения глубины скважин. В связи с этим весьма перспективно использование конструкционных материалов с высокими удельной прочностью, плотностью, коррозионной стойкостью и отвечающих также другим требованиям. К таким материалам относятся прежде всего алюминиевые сплавы, получающие все более широкое применение в нефтяной и газовой промышленности, неметаллические материалы, титан и его сплавы. Эти материалы могут быть использованы также в виде покрытий, что позволяет значительно расширить диапазон свойств конструкционных материалов и увеличить долговечность оборудования. Конструкционный материал должен обладать высокими показателями прочности — времен- [c.23]

    Низкая коррозионная стойкость титана в кипящих растворах НС1 или H2SO4 (114 мм/год в Ю % НС1) повышается на три порядка в присутствии небольших количеств ионов или Fe (0,15 мм/год в кипящей 10 % НС1 с добавкой 0,02 моль/л Си или Fe ) [8]. Присутствие небольшого, количества никеля как в среде, так и в виде легирующей добавки к титану повышает коррозионную стойкость. Показано, например, что титан пассивируется в кипящем 3 % растворе Na l, подкисленном до pH = 1, если металл легировать 0,1 % Ni или ввести в раствор 0,2 мг/л Ni [9]. Наименьшим коррозионным разрушениям подвергается базисная плоскость гексагональной плотноупакованной решетки титана. Небольшие легирующие добавки палладия, платины или рутения также эффективно уменьшают скорость коррозии в кипящем Ю % растворе НС1 (2,5 мм/год для сплава с 0,1 % Pd см. рис. 24.1) [10, 11]. Если на поверхности титана присутствует палладий, скорость коррозии в кипящем 1т растворе H2SO4 уменьшается в 1000 раз [12], причем одинаково эффективно по- [c.373]

    Титан и его сплавы. Коррозионная стойкость Т1 и его сплавов определяется способностью пассивироваться в окислит. и нейтральных средах с образованнем оксидной пленки. Они обладают высокой стойкостью к действию окислит, к-т и щелочей (до 20%-ной концентрации). Отличит, особенность-высокая стойкость в р-рах хлоридов до 110-120°С. Титан не склонен к коррозионному растрескиванию в большинстве известных сред, кроме дымящей HNOз и N204,-сплавы Т1-А1, содержащие более 5% А1, подвергаются этому виду коррозии в р-рах хлоридов лишь при наличии надрезов, трещин и т. п. Двухфазные (а + ) и -сплавы Т1 также менее чувствительны к коррозионному растрескиванию (см. Титана сплавы). Стойкость сплавов в к-тах повышается легированием Рс1 и N1, стойкость к растрескиванию-легированием Мо и V. [c.479]

    ТИТАНИРОВАНИЕ — нанесение на поверхность металлических и неметаллических изделий покрытий из титана или диффузионное насыщение поверхности титаном. Повышает коррозионную стойкость изделий из желееоуглеродистых сплавов, латуни, цинка и др. металлов и сплавов. По отношению к железу титан является катодом и при незначительной пористости покрытия эффективно защищает сталь. Пористость титановых покрытий зависит от предварительной обработки поверхности и условий осаждения. При прочих равных условиях она уменьшается с ростом толщины покрытия. Т. осуществляют термическим испарением, диффузионным насыщением, газопламенным и плазменным напылением, термодис-соционным методом, электролитическим осаждением или плакированием. Термическое испарение титана в вакууме — наиболее часто используемый метод. Этим методом титановые покрытия значительной толщины (десятки и сотни микрометров) наносят на полосовую сталь и изделия различной конфигурации при сравнительно низкой т-ре поверхности ( 500° С). Для получения покрытия титан нагревают в вакууме (Ю " — 10 мм рт. ст.) до т-ры, обеспечивающей интенсивное его испарение ( 1900° С), после чего он осаждается на подогретую поверхность в виде однородного кристаллического слоя (см. также Вакуумные покрытия). На полированной стали такой слой представляет собой зеркальное декоративное покрытие, поверхность которого при небольшой толщине почти полностью повторяет ее рельеф. Термическое испарение титана в [c.571]


    Применение. Титан очень важный конструкционный материал для современной техники. Титан и его сплавы отличаются высокой прочностью, легкостью, тугоплавкостью, химической стой- костью при обычной температуре. Титан используют в качестве легирующей добавки и как вещество, связывающее кислород, азот, водород и другие примеси в металле в малорастворимые соединепия (последние удаляются в шлак). Ферротитан добавляют в специальные марки сталей для повышения их коррозионной стойкости и механической прочности при высоких температурах [ферротитан получают алюмотермическим восстановлением (флюс СаО) предварительно обожженного (для удаления серы) концентрата РеТЮз], Устройства, изготовленные из титана и его сплавов, [c.511]

    Сплавы на основе титана. Физико-механические свойства и коррозионная стойкость технических марок титана м.огут бь[ть в значительной степени повышены легированием пх другими 6o iee toiikhmh элементами. Для изготовления титиио-вых силавов в качестве добавок берут элементы, образующие с титаном непрерывные или ограниченные твердые растворы двух-, трех- или многокомпонентных однофазных систем. Некоторые из этих спла вон обладают пределом текучести, достигающим 1000 Mн/ i . [c.285]

    Сплавы титана, содержащие алюминий и хром, обладают в 3 и. растворе соляной кислоты при 15° С и в I fi. растворе серной кислоты при 50° С меньшей коррозионной стойкостью, чем нелегированный титан с повыщеннем содержания в этих сплавах хрома и алюминия скорость их коррозии увеличивается. Наиболее эффективно способствуют повышению коррозионной стойкости титана в ряде агрессивных растворов добавки Мо, Та, Nb, [c.286]

    В отличие от сплавов Т1 — Мо, сплавы Т1 — Та имеют достаточно высокую коррозионную стойкость и в окислительных средах. Добавка меди к титану в количестве 2% значительно снижает скорость коррозии тнтана в серной кислоте. Дальнейшее повышение содержания меди не влияет па коррозионную стойкость сплава Т1 — Си, а при содержании меди свыше 5% даже 1а6,чюдается снижение коррозионной стойкости сплава. [c.288]

    Сплавы Т1— N1 в разбавленных растворах серной кислоты прн еодержанпи никеля 3--5% имеют более высокую коррозионную стойкость, чем титан, а сплавы, содержащие 0,5 и 1,26% N1, 1н дут себя хуже. При этом увеличение концентрации серной кислоты от до 4 н. почти не влияет па коррозионную стойкость сп,1аво15 с 3 и 5% N1, по увеличивает скорость коррозии сплавов с 0,5 и 1,26% N1. [c.288]

    Тнтан и его сплавы находят все большее применение в совре-мен.чом машиностроении, авиастроении, судостроении, турбостроении, в производстве вооружения. Особенно ценен титан как материал для изготовления частей конструкций, работающих в напряженных условиях. Критерием пригодности таких материалов является отиошение их прочности к весу. Титан и его сплавы используют, когда требуется сочетание минимального веса с высокой прочностью, термической и коррозионной стойкостью. Так, они тнироко применяются для изготовления деталей самолетов, космических аппаратов, ракет, трубопроводов, котлоз высокого давления, для оборудования высокотемпературных процессов в химической и других отраслях промышленности. Одной из наиболее перспективных областей применения титана является судостроение, где решающее значение имеет высокая прочность нри малой плотности и высокая стойкость к коррозии и эрозии в морской воде. Сущестг енное значение имеет использование титана в виде листов для обшивки корпусов судов, литых деталей из титана, выдерживаюнтих длительное пребывание в морской воде, а также для покрытия изнутри смесительных барабанов, предназначенных для перемешивания агрессивных материалов и для других це.тен. В связи с дороговизной листового титана большой практический интерес для судостроительной, химической и других отраслей промышленности представляет применение титана в качестве плакировочного материала для изготовления биметаллических стальных листов. [c.274]

    Титан и его сплавы хорошо сопротивляются знакопеременным и циклическим нагрузкам. Для титана соотношение между пределами выносливости и прочност -равно 0,85, тогда как это соотношение у сталей соот ветствует 0,5, а у алюминиевых сплавов 0,3. Учитыва высокую выносливость и коррозионную стойкость, тита новые сплавы особенно выгодно применять в условиях требующих сопротивления коррозионной усталости. Пр1 температуре ниже нуля предел усталости титановы сплавов повышается, при этом улучшаются и други< механические свойства. Титан не склонен к хладолом кости. [c.66]

    В серной кислоте наблюдаются два максимума скорости коррозии, соответствующие 40 и 75%-ной концентрации (рис. П.9). В 40%-ном растворе серной кислоты процесс коррозии идет с выделением водорода, такая кислота характеризуется наибольшей электропроводностью и максимальной концентрацией водородных ионов. В 75%-ном растворе процесс коррозии сопровождается восстановлением серной кислоты до НгЗ и свободной серы. Добавки окислителей КгСггО , НЙОз, Ре +, Сц2+, Ог, СЬ резко снижают скорость коррозии титана и его сплавов в соляной и серной кислотах. Добавка в титан молибдена значительно повышает коррозионную стойкость сплава в соляной и серной кислотах. Сплавы [c.71]

    Первые два сплава иногда легируют титаном или ниобием для повышения допустимого содержания углерода и азота. Все эти сплавы можно закалять от 925 °С без ухудшения коррозионных свойств. Благодаря тому, что они сохраняют пассивность в агрессивных средах, их коррозионная стойкость обычно выше, чем у обычных ферритных и некоторых аустенитных нержавеющих сталей, представленных в табл. 18.2. Они более устойчивы, например в растворах Na l, HNO3 и различных органических кислот. Если по какой-либо причине происходит локальная или общая депассивация этих сталей, то они корродируют с большей скоростью, чем активированные никельсодержащие аустенитные нержавеющие стали, имеющие в своем составе такие же количества хрома и молибдена [8, 9]. [c.301]

    Некоторые промышленные сплавы Сг—N1—Ре—Шо, соот ветствующие по составу нержавеющим сталям с высоким содержанием никеля, содержат также несколько процентов меди. Помимо других сред, они предназначены для использования в растворах серной кислоты в широком интервале концентраций и обладают в них достаточной коррозионной стойкостью. Легирующие добавки меди выполняют ту же роль, что и добавки палладия к титану (см. разд. 5.4) за счет ускорения катодного процесса [c.362]

    Очищенные методом йодндного рафинирования металлы IV побочной подгруппы резко отличаются по своим свойствам от загрязненных препаратов (0,5—5% примесей), поступающих на очистку. Долгое время считалось, что титан непригоден для механической обработки — он хрупок и легко превращается в порошок при дроблении в ступке [3]. Только после изобретения в 1925 г. метода йодидного рафинирования титан и его аналоги были получены в достаточно чистом виде, и оказалось, что титан, напрнмер, можно ковать, протягивать в проволоку, прокатывать в листы и тонкую фольгу [3]. По прочности и упругости чистый Т1 превосходит многие стали, но почти вдвое легче, чем они. Еще более ценнглмн свойствами обладают сплавы на основе Т1, особенно с благородными металлами, по они дороги. В связи с -ЭТИМ наибольшее прнмеиепне имеют относительно дешевые сплавы Т1 с А1 (марка АТ-3 содержит 3% А1, АТ-6 — 6% А и т. д.). Прочность и особенно стойкость к растрескиванию этих сплавов почти втрое больше прочности Т1 технической чистоты, а стоимость примерно та же. Это позволяет применять сплавы АТ там, где раньше использовалась нержавеющая сталь, — цена изделий нз сплавов АТ не выше, чем стальных, а коррозионная стойкость, например, изготовленных нз них гидролизных аппаратов, в 15 раз больше [3]. [c.97]

    Применение. Титан и его сплавы в связи с их легкостью прочностью, термической и коррозионной стойкостью при меняются для изготовления деталей самолетов, космиче ских кораблей, ракет, подводных лодок, трубопроводов котлов высокого давления, различных аппаратов для хи мической промышленности. Титан широко используется в виде листов для обшивки корпусов судов, обеспечивающих высокую прочность и стойкость в морской воде. [c.110]

    Титан, цирконий и гафний используются как легирующие добавки к специальным сплавам. Они улучшают механические свойства, повышают пластичность, твердость и коррозионную стойкост 5 сплавов. Порошки титана, циркония и гафния используются как поглотители газов (геттеры). Более легкий по сравнению с другими -металлами титан широко применяется также для изготовления турбинных двигателей, корпусов самолетов и морских судов. Особо чистый цирконий используется в качестве конструкционного материала для термоядерных реакторов. Гафний обладает исключительной способностью к захвату нейтронов стержни из этого металла применяются в ядерной технике. Оксиды циркония, титана и гафния находят применение в качестве материалов дл>1 изготовления тугоплавких и химически стойких тиглей и электродов МГД-генераторов. Ti02 используется в качестве красителя (титановые белила). Из карбидов титана и циркония изготовляют шлифовальные круги. Титанат бария (ВаТЮз) широко исполь.-зуется в пьезоэлектрических датчиках. [c.514]

    Использование титана, циркония, гафния и их соединений. По коррозионной стойкости даже в морской воде титан превосходит все нержавеющие стали и цветные металлы. Поэтому он и его сплавы находят различное применение в машиностроении, авиа- и судостроении, турбостроении, в производстве вооружения. Добавка 0,1% Т1 резко повышает качество стали. Сталь с добавкой 2г используется в изготовлении броневых плит и щитов, стволов орудий и пр. Эти металлы связы-вакзт азот и кислород, растворенные в стали, что предотвращает образование раковин и сообщает ей однородность. [c.332]

    Знаинтельные количества титана расходуют в производстве сплавов. Такие сплавы даже при 400—500 С отличаются высокой прочностью. Сравнительная легкость (плотность его 4490 кг/м ), а также высокая коррозионная стойкость титана позволяют использовать его в авиационной и ракетной технике, для сооружения вагонов, судов, в автомобилестроении. Титан пригоден для изготовления узлов и деталей химической аппаратуры. В порошкообразном состоянии титан легко поглощает при нагревании азот и кислород. Поэтому его применяют в радиоэлектронике при изготовлении ламп и других вакуумных устройств. За годы десятой пятилетки производство титана возросло в 1,4 раза. Практическое значение имеют некоторые соединения титана. Так, нитрид Т1М и карбид Т[С титана служат для изготовления тугоплавкого сплава (1 пл — 4216 С), Оксид титина " ) используют в производстве титановых белил. [c.463]

    Несмотря на все большее расширение применения алюминиевых сплавов для морских сооружений, все же остается актуальной проблема изыскания конструкционных материалов, физико-химические свойства которых отвечали бы требованиям, предъявляемым нефтегазопромысловым сооружениям при эксплуатации в открытом море. Наиболее перспективный материал для этой цели — титан. Исследования некоторых титановых сплавов в Черном море на различных глубинах (7, 27, 42, 80 м) показали высокую стойкость исследованньгх сплавов на всех глубинах, и их скорость коррозии не превышала 0,01 г/(м2 ч), в то время как нержавеющие стали типа 18-9 были подвержены питтингу глубиной 2,5 мм после экспозиции в течение 21 мес. С увеличением глубины погружения образцов коррозионная стойкость повьииалась, что объясняется понижением температуры и более низкой концентрацией кислорода. Титан обладает очень высокой стойкостью не только в обычных морских средах, но также в загрязненных водах, в морской воде, содержащей хлор, аммиак, сероводород, двуокись углерода, в горячей морской воде. Титан выдерживает очень высокие скорости потока морской воды После 30-суточных испытаний при скорости потока 36,Ь. i, с бьип лолч чены следующие результаты  [c.25]

    Титан обладает отличной стойкостью к струевой и кавитационной коррозии в морской воде. Высокую стойкость к эрозионной коррозии показали сплавы Т1 - 6А1 У и 11-7А1-2НЬ-1Та. Титан обладает высокой стойкостью к питтинговой, щелевой и межкристаллитной коррозии. Он не корродирует под слоем отложений и лакокрасочных покрытий. В последние годы проводятся обширные исследования коррозионного растрескивания титановых сплавов в морской воде, причем особое внимание уделяется сплавам Т1-6А1 У Т1-6А1-6У-28п Т1-ЗСи Т1 -7А1--2№-1 Та и Б-8Мо-8У-2Ре-3 А1. [c.26]

    Безусловные достоинства титановьгх сплавов — высокая стойкость к общей коррозии, локальным видам коррозионного разрушения в морской воде в сочетании с высокой механической прочностью, малой по сравнению со сталью плотностью, и др. делают титан и его сплавы весьма перспективным конструкционным материалом для ответственных морских сооружений. Титан не лишен некоторых недостатков, к которым относится его низкая стойкость к биологическим формам коррозии, а также его способность интенсифицировать коррозию других металлов, находящихся с ним в контакте. [c.26]

    Исследовано электрохимическое поведение сплавов титана с алюминием в растворах карбонатов щелочных металлов. Обнаружено, что введение в указанные растворы галогенид-ионов вызывает резкое понижение коррозионной стойкости титан-алюминиевых сплавов вследствие питтин-гообразования. Введение в растворы карбонатов анионов кислородсодержащих кислот не оказывает заметного влияния ни на потенциал коррозии, ни на критическую плотность тока. [c.27]


Смотреть страницы где упоминается термин Титан и сплавы коррозионная стойкость: [c.154]    [c.88]    [c.55]    [c.128]    [c.101]    [c.277]    [c.101]    [c.65]    [c.66]    [c.71]    [c.294]    [c.65]    [c.66]    [c.71]    [c.495]    [c.412]    [c.18]   
Коррозионная стойкость материалов (1975) -- [ c.0 ]

Коррозионная стойкость материалов Издание 2 (1975) -- [ c.0 ]

Коррозионная стойкость материалов в агрессивных средах химических производств Издание 2 (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозионная стойкость

Коррозионная стойкость промышленных сплавов титана

Коррозионная стойкость сплавов титана в различных агрессивных средах

Коррозионная стойкость технического титана и его сплавов в различных средах

Коррозионная стойкость титана

Коррозионная стойкость титана и его сплавов Томашов, Л. А. Андреев. Окисление титана при высоких температурах

Коррозионная стойкость титана и его сплавов в технологических средах химической промышленности

Сплавы титана

Сплавы титана повышенной коррозионной стойкости



© 2025 chem21.info Реклама на сайте