Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозионная стойкость промышленных сплавов титана

    Повышенной коррозионной стойкостью обладают сплавы титана 4200, 4201 и 4207. Эти сплавы в Советском Союзе выпускаются как опытно-промышленные (сведения о их коррозионной стойкости в сравнении с титаном ВТ1-0 приведены выше). [c.201]

    Титан и его сплавы находят все большее применение в современном машиностроении, авиастроении, судостроении, турбостроении, производстве вооружения. Особенно ценен титан как материал для частей конструкций, работающих в напряженных условиях, критерием пригодности которого является отношение прочности к весу. Титан используют, когда требуется сочетание минимального веса с высокой прочностью, термической и коррозионной стойкостью. Так, его применяют для изготовления деталей судов, самолетов, трубопроводов, котлов высокого давления, для оборудования высокотемпературных процессов в химической и других отраслях промышленности. [c.88]


    Металлический титан и сплавы на его основе. Области применения титана и его сплавов как конструкционных материалов определяются комплексом свойств, выгодно отличающих их от сплавов железа, алюминия и магния. Для них характерны высокая коррозионная стойкость, жаропрочность (сохраняют механические характеристики до 430—450°), малая плотность и высокая прочность /По прочности они превосходят некоторые нержавеющие стали, алюминиевые сплавы (в 2—3 раза), магниевые сплавы (в 5 раз). Удельная прочность (прочность, отнесенная к массе) у них наивысшая среди технических материалов. Эти свойства отвечают современным требованиям машиностроения и выдвигают титан в ряд перспективных материалов для использования во всех отраслях промышленности (табл. 60). [c.242]

    Оборудование нефтяной и газовой промышленности эксплуатируется в чрезвычайно тяжелых условиях. Долговечность и надежность работы оборудования во многом зависят от технико-экономической характеристики применяемых конструкционных материалов. К ним предъявляются очень высокие требования они должны обладать определенным комплексом прочностных и пластических свойств, сохраняющихся в широком интервале температур хорошими технологическими свойствами, не должны быть дефицитными и дорогими. Во многих случаях предъявляются высокие требования к коррозионной стойкости материала, особенно к специфическим видам разрушения — водородному охрупчиванию, коррозионному растрескиванию, межкристаллитной коррозии и др. Важное значение при выборе конструкционных материалов имеют металлоемкость и масса оборудования. Многие нефтяные и газовые месторождения расположены в отдаленных и труднодоступных районах, во многих районах намечается тенденция увеличения глубины скважин. В связи с этим весьма перспективно использование конструкционных материалов с высокими удельной прочностью, плотностью, коррозионной стойкостью и отвечающих также другим требованиям. К таким материалам относятся прежде всего алюминиевые сплавы, получающие все более широкое применение в нефтяной и газовой промышленности, неметаллические материалы, титан и его сплавы. Эти материалы могут быть использованы также в виде покрытий, что позволяет значительно расширить диапазон свойств конструкционных материалов и увеличить долговечность оборудования. Конструкционный материал должен обладать высокими показателями прочности — времен- [c.23]


    Основное содержание справочника составляют таблицы коррозионной стойкости. В первой графе таблиц приводится наименование материала, процентный состав его (по массе) и марка отечественного материала, близкого к нему по составу (указывается в скобках). Если материал выпускается промышленностью, то указывается только его марка, а состав определяется соответствующими ГОСТами. Условия предварительной термической или механической обработки материалов, если они известны, указываются в примечании или рядом с маркой материала. Материалы располагаются в следующем порядке. Вначале идут металлические материалы, которые начинаются с железа и железных сплавов как наиболее широко применяющиеся в практике. Затем следуют в алфавитном порядке наиболее распространенные металлы и сплавы алюминий и его сплавы, магний и его сплавы, медь и ее сплавы, никель и никелевые сплавы, титан и титановые сплавы. После этого в алфавитном порядке размещаются другие металлы и их сплавы. В последней части таблиц приводится химическая стойкость неметаллических материалов (по алфавиту). Скорость коррозии металлов и сплавов характеризуется потерей массы ( , г/м .ч) или глубинным показателем коррозии (/г , мм/год). Длительность коррозионных испытаний приводится в примечаниях или в отдельном столбце таблицы. Продолжительность испытания оказывает влияние на скорость коррозии (в частности, на среднюю скорость коррозии). Как правило, при более длительных испытаниях средняя скорость коррозии становится меньше. Большое влияние на скорость коррозии могут оказать перемешивание среды и примеси. В таблицах, по возможности, отмечены эти особенности. [c.4]

    Титан и его сплавы используют в возрастающем масштабе в промышленности благодаря преимуществу их специальных характеристик. Такие свойства, как относительно высокая прочность, превосходная общая коррозионная стойкость и плотность, промежуточная между алюминием и сталью, делают титан перспективным конструкционным материалом. Прогресс в производстве титана способствовал получению различных полуфабрикатов из титановых сплавов от проволоки и фольги до крупногабаритных заготовок. Возможно также производство деталей методами литья и порошковой металлургии. Большинство технологических операций на титане совершаются при высоких температурах. Вследствие большой реактивности сплавов титана и тенденции к загрязнению поверхности необходимо соблюдение мер предосторожности при его производстве. Однако реактивность, особенно способность титана растворять собственные окислы, может быть использована в производстве сложных деталей методами диффузионной сварки. [c.413]

    Титан и его сплавы благодаря высокой коррозионной стойкости в большинстве агрессивных сред все больше вытесняют традиционные стали и сплавы в различных отраслях промышленности и прежде всего в химической, нефтяной, металлургической, пищевой и транспортном машиностроении. [c.70]

    Среди металлических материалов исключительное полол<ение занимают сплавы на основе железа. Сплавы железа с содержанием углерода до 2% принято называть сталью, а свыше 2% — чугуном. Используемые в настоящее время в промышленности стали обычно делят на углеродистые и легированные. Создание новых н интенсификация существующих промышленных процессов заставляет все больше использовать легированные стали, которые обладают повышенной коррозионной стойкостью. Массовая доля средне- и высоколегированных сталей в настоящее время составляет почти 20% от общего количества производимых промышленностью черных металлов. Для легирования используют такие элементы, как никель, хром, молибден, вольфрам, ванадий, кобальт, марганец, медь, титан, алюминий. Сплавы железа с хромом составляют основу нержавеющих сталей, среди которых [c.136]

    Титан, легированный палладием или платиной, как конструкционный материал для химической промышленности обладает редким и ценным сочетанием свойств — коррозионной стойкостью в окислительных и неокислительных кислых средах. В таблице 7.13 приведена сравнительная характеристика коррозионной стойкости титана и сплава титана с 0,2 %> Pd. [c.221]

    Титан и его сплавы (ГОСТ 19807-91) отличаются высокой прочностью и коррозионной стойкостью в агрессивных средах. Находит применение в пищевой и химической промышленности для изготовления емкостной аппаратуры, наиболее ответственных узлов и деталей оборудования (фильтров, центрифуг, сушилок, насосов и т.д.). Широкое применение титана сдерживает его высокая стоимость. [c.87]

    Чистейший, так называемый иодидный титан, получаемый термическим разложением тетраиодида титана в вакууме, очень пластичен и имеет сравнительно невысокую прочность. Его применяют, главным образом, для исследовательских целей. Содержание даже незначительных примесей в технически чистом титане (0,03—0,15 % кислорода, 0,01—0,04% N, 0,02—0,15% Ре, 0,01—0,05% Si, 0,01—0,03 % С) заметно повышает его прочностные свойства. Поэтому не только сплавы титана, но и непо средственно технически чистый титан (ВТ1—О и ВТ1—00) широко применяют, например в химической промышленности, в частности, в теплообменной аппаратуре. Однако разнообразие запросов техники, в начале главным образом из необходимости иметь возможно широкий спектр механических свойств и технологических обработок, а также в целях возможного повышения коррозионной стойкости металлического материала, стимулировали создание многочисленных титановых сплавов с разнообразными физико-химическими и технологическими свойствами [2, 200]. [c.243]


    Технический титан марок ВТ1-00, ВТ1-0, ВТМ и титановые сплавы марок ОТ4, ОТ4-0, ОТ4-1, ВТЗ-1, ВТ4, ВТб, ВТ5-1 обладают высокой коррозионной стойкостью во многих сильных агрессивных средах, в частности в растворах хлоридов и хлористых солей. Титан и титановые сплавы хорошо используются в качестве коррозионно-стойкого материала для химической аппаратуры, применяемой в производстве мочевины, хлора, хлористого аммония, азотной кислоты, синтетического волокна, отбеливающих средств, в нефтехимической промышленности и во многих других производствах [c.148]

    Сочетание высоких прочностных свойств и коррозионной стойкости обусловили широкое применение титана и его сплавов. Как конструкционный материал титан и его сплавы применяют в авиации, ракетной технике, при строительстве морских судов, в химической промышленности, при изготовлении гидрометаллургической аппаратуры, различных деталей гальванических ванн, в приборостроении и др. Поскольку титан и его сплавы жаростойки, их широко используют для изготовления деталей, подвергающихся высокотемпературному нагреванию. Листовой титан применяют для футеровки стальных аппаратов от воздействия агрессивных сред. В качестве конструкционного материала титан и его сплавы рекомендуются для работы более чем в 130 агрессивных средах. [c.66]

    Б последнее время большое внимание уделяется вопросу использования титана в химической промышленности. Трудности получения и некоторые особенности обработки делают титан все еще дорогостоящим материалом. Коррозионное поведение этого металла определяется устойчивостью пассивной пленки на его поверхности в исследуемом растворе. Главным преимуществом титана и его сплавов, в сравнении с другими конструкционными материапами, является сочетание высокой коррозионной стойкости в нейтральных, слабощелочных и слабокислых растворах хлоридов с малым удельным весом. По литературным данный титановые трубы применя- [c.7]

    Таким образом, отличительные особенности применения титана и его сплавов в химической промышленности развитых капиталистических стран (США, Канада, Япония, страны Западной Европы) таковы широкое применение фасонного литья использование сплава титана повышенной коррозионной стойкости Ti — 0,2% Pd применение стальной аппаратуры, футерованной титаном и плакированной тонколистовым титаном широкое внедрение пластинчатых теплообменников использование тонкостенных труб в кожухотрубных теплообменниках i тонколистового титана в аппаратах и конструкциях. [c.164]

    Наряду с ростом стоимости продукции за счет частого обновления оборудования, ремонтов, монтажных работ возникает опасность экологического загрязнения окружающей среды целых регионов и ухудшения здоровья населения. Одним из материалов, обладающим высокой коррозионной стойкостью, является титан и сплавы на его основе. Самым крупным потребителем нефтехимической продукции является хлорная промышленность. Основной тип оборудования из титана - это теплообменная и выпарная аппаратура. [c.137]

    Многие /-элементы ГУ-УП групп используются как легирующие добавки для улучшения качества сталей. В состав сталей их обычно вводят в виде ферросплавов (сплавов с железом), например, феррохрома, ферромарганца, ферротитана, феррованадия и др. Легирование ими придает сталям ценные качества, например коррозионную стойкость (хром, марганец, титан), твердость и ударная вязкость (цирконий), твердость и пластичность (титан), прочность, ударная вязкость и износостойкость (ванадий), твердость и износостойкость (вольфрам), твердость и ударная вязкость (марганец), жаропрочность и коррозионную стойкость (молибден, ниобий). Марганец используется как раскислитель стали. Все более широкое применение получают эти металлы и их сплавы, как конструкционные, инструментальные и другие материалы. Так, титан и его сплавы, характеризуемые легкостью, коррозионной устойчивостью и жаропрочностью, применяются в авиастроении, космической технике, судостроении, химической промышленности и медицине. В атомных реакторах используются цирконий (конструкционный материал, отражающий нейтроны), гафний (поглотитель нейтронов), ванадий, ниобий и тантал. Вследствие высокой химической стойкости тантал, ниобий, вольфрам и молибден служат конструкционными материалами аппаратов химической промышленности. Вольфрам, молибден и рений, как тугоплавкие металлы, используются для изготовления катодов электровакуумных приборов и нитей накаливания термопар и в плазмотронах. Вместе с тем при высоких температурах вольфрам и молибден окисляются кислородом, причем образующиеся при высокой температуре оксиды не защищают эти металлы от коррозии, поэтому на воздухе они не жаростойки. Вольфрам служит основой сверхтвердых сплавов. Хромовое покрьггие придает изделиям декоративный вид, повышает твердость и износостойкость. [c.373]

    Тнтан и его сплавы находят все большее применение в совре-мен.чом машиностроении, авиастроении, судостроении, турбостроении, в производстве вооружения. Особенно ценен титан как материал для изготовления частей конструкций, работающих в напряженных условиях. Критерием пригодности таких материалов является отиошение их прочности к весу. Титан и его сплавы используют, когда требуется сочетание минимального веса с высокой прочностью, термической и коррозионной стойкостью. Так, они тнироко применяются для изготовления деталей самолетов, космических аппаратов, ракет, трубопроводов, котлоз высокого давления, для оборудования высокотемпературных процессов в химической и других отраслях промышленности. Одной из наиболее перспективных областей применения титана является судостроение, где решающее значение имеет высокая прочность нри малой плотности и высокая стойкость к коррозии и эрозии в морской воде. Сущестг енное значение имеет использование титана в виде листов для обшивки корпусов судов, литых деталей из титана, выдерживаюнтих длительное пребывание в морской воде, а также для покрытия изнутри смесительных барабанов, предназначенных для перемешивания агрессивных материалов и для других це.тен. В связи с дороговизной листового титана большой практический интерес для судостроительной, химической и других отраслей промышленности представляет применение титана в качестве плакировочного материала для изготовления биметаллических стальных листов. [c.274]

    Некоторые промышленные сплавы Сг—N1—Ре—Шо, соот ветствующие по составу нержавеющим сталям с высоким содержанием никеля, содержат также несколько процентов меди. Помимо других сред, они предназначены для использования в растворах серной кислоты в широком интервале концентраций и обладают в них достаточной коррозионной стойкостью. Легирующие добавки меди выполняют ту же роль, что и добавки палладия к титану (см. разд. 5.4) за счет ускорения катодного процесса [c.362]

    Применение. Титан и его сплавы в связи с их легкостью прочностью, термической и коррозионной стойкостью при меняются для изготовления деталей самолетов, космиче ских кораблей, ракет, подводных лодок, трубопроводов котлов высокого давления, различных аппаратов для хи мической промышленности. Титан широко используется в виде листов для обшивки корпусов судов, обеспечивающих высокую прочность и стойкость в морской воде. [c.110]

    По коррозионной стойкости Мо значительно превосходит высоконикелевые сплавы и титан. Согласно приведенным выше данным, в Н2 SO4, как и в дрзггих кислотах (НС1, H2SO4), по коррозионной стойкости молибден занимает промежуточное положение между ниобием и танталом (см. рис. 41, 42). Необходимо отметить, что ни различие в химическом составе молибденового сплава, ни технология его изготовления (вакуум-плавлен-ный, спеченный), ни структурное состояние (наклепанный, рекристаллизованный) не влияют на скорость общей коррозии, определяемую весовым методом. В связи с этим все промышленные сплавы, если их рассматривать как коррозионностойкие, можно объединить под общим названием — молибден. Несмотря на одинаковую скорость общей коррозии, [c.90]

    Наиболее устойчивой пассивностью окисного типа обладают титан и его сплавы. Вследствие образования на его поверхности плотной защитной пленки Т102 титан в отличие от железа, никеля, хрома и нержавеющих сталей устойчив в нейтральных и слабокислых растворах хлоридов при повышенных температурах, а также в растворах окислителей. Это определяет возможность его широкого применения в различных отраслях промышленности, где требуется высокая коррозионная стойкость в сочетании с удельной прочностью. [c.33]

    Биметаллы успешно применяются во многих отраслях промышленности при решении конструктивных и технологических вопросов (гибка, сварка, отделка поверхности). Для изготовления емкостного оборудования используют биметалл углеродистая стальЧ-нержавеющая сталь . Весьма эффективно применение биметаллических конструкций из высокопрочных сталей с титаном. В этом случае удается получить высокую прочность и высокую коррозионную стойкость. Обычно такие биметаллические конструкции производят с применением взрывной технологии или диффузионной сваркой. В практике нашел широкое применение биметалл сталь-Ьмедь , особенно для труб, подвергающихся высокому внутреннему давлению и действию коррозионной среды. Путем наплавки (иногда с последующей деформацией) производят биметаллические полуфабрикаты и изделия из биметалла сталь-Ьбронза . Большинство листов из алюминиевых сплавов производится с технологической планировкой чистым алюминием или сплавом алюминия с цинком, которая выполняет роль более коррозионностойкого слоя. [c.77]

    Титан и его сплавы обладают очень высокой коррозионной стойкостью в морской воде, влажной морской и промышленной атмосфере. В этих средах скорость коррозии титановых сплавов не превышает 0,0001 мм/год. Несмотря на то, что титан относится к наи(5олее термодинамически [c.87]

    Титан и его спчавы обладают очень высокой коррозионной стойкостью в морской воде, влажной морской и промышленной атмосфере. В этих средах скорость коррозии титановых сплавов не превышает 0,0001 мм/год. Несмотря на то, что титан относится к наиболее термодинамически неустойчивым металлам, его высокая коррозионная стойкость обусловлена защитными свойствами образующихся гидридных и оксидных пленок. Титановые сплавы устойчивы в окислительных средах даже в присутствии больших количеств хлор-ионов в большинстве органических сред. Исключение составляют серная, соляная,. муравьиная, щавелевая, винная, лимонная, смесь ледяной уксусной кислоты с уксусным ангидридом. Технические титановые сплавы, легированные алюминием (до 6%), марганцем (1...2%), оловом широко используются в химическом машиностроении, пищевой промышленности. [c.158]

    В промышленности широко используют литые изделия, так как некоторые сплавы (например, Ре81), имеющие высокую коррозионную стойкость во многих агрессивных средах, отличаются повышенной твердостью и хрупкостью и могут применяться только в литом состоянии. Увеличение выпуска литья из коррознонностойких сталей требует упрощения технологии изготовления, особенно для усложненных конфигураций, химического оборудования, эксплуатируемого в агрессивных средах. Доля отливок из легированных сталей все время значительно возрастает по сравнению с общим объемом литых изделий, применяемых в химической промышленности. В настоящее время в создании новых марок литых коррозионностойких сталей наблюдается та же тенденция, что и для деформируемых сталей, т. е. стремление к понижению содержания никеля, повышению прочности сплавов и коррозионной стойкости специальным легированием. Литые коррозионностойкие стали могут подвергаться межкристаллитной коррозии, поэтому для ее предупреждения стали легируют также титаном или ниобием. Однако титан ухудшает литейные свойства металла, вследствие его добавок получаются пористые отливки. Литейные свойства аустенитных сталей типа 12Х18Н9ТЛ ниже углеродистых. [c.216]

    Таким образом, титан, легированный катодными добавками, а также некоторые сплавы титана, модифицированные Рё или Р1, обладают довольно редким и ценным свойством как конструкционный металлический материал для химической промышленности, а именно, одно1временной коррозионной стойкости как в окислительных, так и в неокислительных кислых средах. Установлена также повышенная стойкость титана и некоторых егО сплавов, модифицированных палладием, по сравнению с теми же сплавами без палладия в условиях щелевой, питтинговой коррозии и растрескивающей коррозии [76, 77]. [c.51]

    Важность проблемы создания и применеяия Н0 вых химически стойких металлических материалов в различных отраслях нашей промышленности, особенно в химическом машиностроении, подчеркнута в Программе КПСС. За последние два десятилетия в связи с интенсификацией и разработкой новых технологических процессов, протекающих в агрессивных средах при высоких температурах и давлениях, значительно возрос интерес к использованию новых конструкционных материалов на основе тугоплавких и редких металлов, таких как титан, ниобий, ванадий, молибден. Эти металлы и их сплавы обладают весьма ценными физико-химическими и механическими свойствами, а по коррозионной стойкости во многих случаях значительно превосходят сплавы на основе железа и цветных металлов, которые являются до настоящего времени основными конструкционными материалами в химическом аппарато-строении. По сырьевым ресурсам и возможностям металлургической промышленности такие металлы, как титан и ниобий (а также и другие из числа тугоплавких), могли бы уже сейчас широко использоваться в химическом машиностроении. Однако их внедрение в эту отрасль промышленности идет сравнительно медленно. Одна из причин отставания — отсутствие необходимых сведений о свойствах этих металлов и их сплавов, в особенности об их химической стойкости и характере поведения в различных агрессивных средах. [c.65]

    Изучение поведения титана ВТ-1 и более твердого сплава на основе титана ОТ-4 в условиях совместного воздействия НС1 и H2S в растворе показало (табл. 4.5 и 4.6), что с возрастанием температуры и концентрации соляной кислоты коррозионная стойкость этих материалов падает, причем с увеличением температуры переход от стойкости к нестойкости происходит скачкообразно. Сплав ОТ-4 характеризуется несколько меньшей стойкостью, чем титан ВТ-1. Введение сероводорода в соляную кислоту практически не сказывается на их коррозионной стойкости. Как видно из этих данных, во всем температурном интервале и при концентрации НС1 0,1 н. (что отвечает условиям конденсации и охлаждения наиболее агрессивного нефтепродукта при первичной переработке нефти) ВТ-1 и ОТ-4 относятся к стойким и весьма стойким материалам по шкале ГОСТ 5272 — 68. Четырехмесячные промышленные испытания образцов в погружном конденсаторе фляшинг-ко-лонны подтвердили эти выводы. Титан оказался практически вполне стойким потери веса у образцов ВТ-1 —0,00014 г/(м -ч), ОТ-4 — 0,00021 г/(м -ч). В то же время образцы из алюминиевого сплава и углеродистой стали разрушились полностью, а латунные показали потери веса 0,163 г/(м -ч) [17]. Установлена также высокая стойкость титана к точечной коррозии и к коррозионному растрескиванию в солянокислых растворах, насыщенных сероводородом . Все это позволяет рекомендовать титан как конструкционный материал для конденсационно-холодильного оборудования установок первичной переработки нефти, в том числе АВТ. [c.73]

    Сплавы на основе титана, изготовляемые промышленностью обладают высокими механическими свойствами по сравнению с нелегированным титаном, но в ряде случаев имеют пониженнз ю коррозионную стойкость. Проблеме создания коррозионностойких сплавов на основе титана уделяется большое внимание. Установлено, что подходящим легированием можно повышать химическую стойкость титана. Нарщено, в частности, что легирование титана молибденом, танталом, цирконием, медью, палладием, платиной, иридием и др. повышает его коррозионную стойкость [1—5]. [c.173]

    Большое значение для промышленности СК имеет применение титана. С помощью этого металла могут быть успешно решены острые коррозионные проблемы в производстве таких каучуков, как наириты, тиоколы, бутилкаучук, где встречаются хлороргани-ческие соединения, склонные к гидролизу с образованием соляной кислоты. С большим экономическим эффектом титан можно использовать и в тех цехах, где в перерабатываемых средах содержатся агрессивные хлористые соли, например хлористый аммоний или хлорное железо. Среди многочисленных сплавов титана особенно высокой коррозионной стойкостью в солянокислых средах [c.9]

    Проведенные за последнее время исследования показали, что для изготовления оборудования производства хлоратов наряду с чистым титаном ВТ1 возможно также применение промышленн( го титанового сплава 0Т4 (содержащего 2—3% алюминия и 1—2% марганца). В указанных растворах он также обладает высокой коррозионной стойкостью. Титановые подогреватели хлорид-хлоратных и хлорит-хлорат-гипохлоритных растворов эксплуатируются более 5 лет без признаков коррозионного разрушения. [c.325]

    Цирконий по своим свойствам близок к титану, и технология его получения аналогична технологии получения титана (метод Кролля) [60]. Склонность циркония к поглощению азота и кислорода затрудняет процесс его получения, а поглощение им водорода ограничивает сферу его применения. В результате поглощения газов механические свойства циркония, а также его стойкость в воде высокой чистоты под давлением ухудшаются. Цирконий отличается чрезвычайно высокой пластичностью и коррозионной стойкостью. Он применяется в химической промышленности сплав циркалой используется для защитных оболочек в атомных энергетических установках (учитывается его стойкость в воде под давлением, высокая жаропрочность, а также малое эффективное сече-, ние захвата нейтронов) [61]. Цирконий можно сваривать в атмосфере инертных газов. [c.444]

    Условия эксплуатации оборудования в химической промышленности иногда оказываются слишком жесткими даже для высоколегированных сталей. В этом случае для изготовления требуется применение дефицитных металлов и их сплавов. Интенсификация отдельных процессов является также предпосылкой необходимости применения таких материалов, например, для ответственных частей аппарата, где в результате наиболее острой фазы реакции имеют место максихмальная температура и химическая активность, а также в условиях резких колебаний температур и теплообмена в агрес-сивиых средах. Здесь особенно применимы титан, тантал, цирконий и ниобий, которые обладают исключительно высокой коррозионной стойкостью в большинстве агрессивных сред в широком диапазоне концентраций и температур. Высокая надежность аппаратуры из титана, тантала, циркония и ниобия при длительной эксплуатации в значительной мере компенсируют их относительно большую стоимость. [c.51]

    Сочетание высоких прочностных свойств и коррозионной стойкости обусловили широкое применение титана и его сплавов. Как конструкционный материал титан и его сплавы применяются в авиации, ракетной технике, при строительстве морских судов, в химической промышленности, при изготовлении гидрометаллургическон ап- [c.72]

    По коррозионной стойкости в ряде практически важных сред титан превосходит такие широко используемые в промышленности металлы и сплавы, как нержавеющие стали, алюминий и его сплавы. Титан устойчив в окислительных средах даже в присутствии больших количеств хлор-ионов, но корродирует в растворах восстановительных кислот, таких как серная, соляная. Однако его коррозионная стойкость в этих средах может быть повышена добавлением в раствор небольших количеств окислителей (например, азотной кислоты, хлора, ионов Т - -, Ре -<-, Си2->- и других) или окислительных (анодных) ингибиторов. Титан имеет высокую коррозионную стойкость в различных атмосферах (морской, промышленной, сельской). Данные семилетних испытаний показали, что скорость коррозии не превышала 0,0001 мм1год. В морской воде как на поверхности, так и на больших глубинах (данные 3-летних испытаний) титан не подвергается коррозии. Длительные испытания (4—8 лет) титана в разнообразных почвах показали отсутствие коррозионных потерь. Титан отличается высокой стойкостью в большинстве органических сред. Исключение составляют муравьиная, щавелевая, винная, лимонная, смесь ледяной уксусной кислоты с уксусным ангидридом, в которых титан корродирует с большой скоростью. [c.226]

    Замечательное сочетание свойств, которыми обладает титан (высокая прочность, небольшой удельный вес, тугоплавкость и высокая коррозионная стойкость), а также доступность сырья привлекают к нему внимание научны.х и инженерно-те.хнически.х работников. Потребность в легком и прочном, химически стойком и жаропрочном материале возникла в связи с развитием новых отраслей химической промышленности. Имеющиеся конструкционные материалы уже не удовлетворяют предъявляемым к ним требованиям высокой жаропрочности и коррозионной стойкости. Титан, обладая высокой температурой плавления (1725°), по жаропрочности должен приближаться к другим тугоплавким металлам, между тем при 500° наблюдается явление ползучести по удельному весу (4,5 г/сж ) он располагается между легкими металлами и металлами типа железа и никеля. По коррозионной стойкости во многих средах титан превосходит нержавеющие стали. Таким образом, для титана и его сплавов характерны высокая коррозионная стойкость и прочность при малом удельном весе. [c.9]


Смотреть страницы где упоминается термин Коррозионная стойкость промышленных сплавов титана: [c.931]    [c.18]    [c.74]    [c.175]    [c.241]    [c.257]    [c.43]    [c.187]    [c.474]   
Смотреть главы в:

Коррозия и защита титана -> Коррозионная стойкость промышленных сплавов титана




ПОИСК





Смотрите так же термины и статьи:

Коррозионная стойкость

Коррозионная стойкость титана

Сплавы титана

Титан и сплавы коррозионная стойкость



© 2025 chem21.info Реклама на сайте