Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ацетилен Ацетиленовые соединения, полимеризация

    В процессе конверсии углеводородов наряду с ацетиленом образуется значительное количество его высших гомологов. 1 ак, при электрокрекинге метана доля высших гомологов достигает 15—20% от всего количества образовавшихся ацетиленовых соединений. Вопрос очистки ацетилена от высших гомологов при переходе на новые виды сырья приобретает первостепенное значение не только вследствие жестких требований к чистоте ацетилена, предъявляемых химической промышленностью, но и с точки зрения условий безопасности процессов его дальнейшей переработки, так как полимеризация высших гомологов ацетилена приводит к образованию взрывчатых соединений. Основные количества высших гомологов ацетилена приходятся на винилацетилен, метилацетилен и диацетилен. [c.122]


    V. Полимеризация. Полимеризация ацетиленовых углеводородов может приводить к образованию разнообразных алифатических и карбоциклических соединений. Легко получаются углеводороды с утроенным молекулярным весом, относящиеся к бензольным, или ароматическим, углеводородам. Так, сам ацетилен при температуре темно-красного каления переходит в бензол (Вертело) метилацетилен при действии серной кислоты может превращаться в симметрический триметилбензол (мезитилен)  [c.384]

    Ацетилен — горючий и взрывоопасный газ. Пределы взрываемости его смесей с воздухом 2,2—81 объемн. %, с кислородом 2,3— 93 объемн. %. Ацетилен обладает слабым наркотическим действием на организм в смеси с воздухом, вследствие уменьшения концентрации кислорода, вызывает удушье. Ацетилен является химически активным соединением, способным образовывать с медью, серебром и ртутью взрывоопасные ацетилениды меди, серебра, ртути. Особенностью ацетилена является его способность к взрывному распаду в отсутствие кислорода при определенных условиях и наличии источника воспламенения. Высшие ацетиленовые углеводороды способны к полимеризации, взрывоопасны, токсичны. [c.84]

    При производстве винилацетилена (исходного продукта для синтеза хлоропренового каучука) образуются побочные продукты, основную часть которых составляет тример ацетилена — дивинил-ацетилен СН2 = СН—С = С—СН = СН2 с примесью изомера, тетрамеров ацетилена и пр. После термической полимеризации этих продуктов в растворе ксилола в среде инертного газа и в присутствии стабилизатора для предотвращения образования взрывоопасных перекисных соединений получают примерно 60%-ный раствор олигомера дивинилацетилена с молекулярной массой 800—1200 — лак этиноль ( ацетиленовое масло ). [c.178]

    Суть рассматриваемых ниже представлений о механизме реакций циклизации и полимеризации ацетиленов на переходных металлах сводится к предположению об образовании из ацетиленового я-комплекса металлоорганического соединения с о-связью М—С наращивание цепи происходит за счет внедрения я-координированного ацетилена по связи М—С. [c.489]

    Первой ступенью процесса отделения ацетилена с помощью растворителей является удаление активных примесей, а также примесей, имеющих наиболее высокую температуру кипения компоненты с кислотными свойствами, как-то цианистый водород, сероводород и углекислота, удаляются промыванием водными щелочами. Сероводород возможно удалять окислением. Небольшие количества соединений, имеющих больше двух атомов углерода в молекуле, отделяются фракционной конденсацией [20] или поглощаются при температурах, близких к их температуре кипения, малолетучими растворителями — нитробензолом, газойлем [21, 22] или галоидоуглеводородами. Диены и высшие углеводороды ацетиленового ряда более растворимы в ацетоне, чем ацетилен, и могут быть удалены цетоном при температуре выше той, которая требуется для растворения ацетилена. Такие высокореакционные углеводороды можно удалять также путем полимеризации с серной или фосфорной кислотой [24], в присутствии силикагеля [24, 25] или хлористого алюминия [24]. [c.58]


    Наиб, интересные р-ции комплексов — превращения ацетиленовых лигандов, напр, циклоолигомеризация при действии СО или НС S СН, приводящая к обрг1зованию 4—6-члеи-пых циклов. Получ. взаимод. ацетиленовых соед. с солями или карбонилами металлов прн этом ацетилен вытесняет др. лиганд или присоединяется к координационно ненасыщ. соединению. Образуются как промежут. продукты в промышленно важных процессах циклоолигомеризацин и полимеризации ацетиленов, катализируемых соединениями переходных металлов. [c.269]

    Доказательства в пользу вторичного ингибирующего эффекта получил Полинг [90], который методом ИК-спектроскопии обнаружил защитные полимерные пленки на поверхности железа после его пребывания в соляной кислоте, содержавшей ацетиленовые соединения пропаргиловый спирт и этшшлциклогексанкарбинол. По мнению автора, реакциями, приводящими к вторичному ингибирующему эффекту ацетиленовых соединений, является процесс гидрогенизации ацетиленовых ингибиторов водородом и каталитическое гидрирование ацетиленов при реакции полимеризации карбоксильных соединений  [c.154]

    Еще в начале нашего столетия в работах А. Е. Фаворского, . В. Лебедева и Карозерса указывалось на существенную роль алленов в ряде важнейших химических превращений (таких, как присоединение, перегруппировки, полимеризация и др.) непредельных соединений. Однако, несмотря на разнообразные и интересные превращения алленов, работы по их синтезу и исследованию развива-лись сравнительно медленно. Это объяснялось многими причинами и, прежде всего, тем, что в химическом отношении алленовые системы являются чрезвычайно реакционноспособными они легко поли-меризуются, склонны к реакциям присоединения, а также к легким аллен-ацетилен-диеновым превращениям и перегруппировкам. Повышенная реакционность сильно затрудняла синтез и химическое изучение производных алленового ряда. Повышенный интерес к алленовым соединениям, который вновь стал проявляться в последнее время, связан, прежде всего, с тем, что из метаболитов растений и грибов были выделены различные типы высоконепредельных функ циональных производных, молекулы которых содержат систему алленовых связей. Эти соединения (например, одиссин, микомицин и др.) обладают высокой антибактериальной и фунгицидной активностью, причем характер активности в значительной степени определяется наличием в молекуле алленовой группировки. Потенциальные возможности алленов, используемых в качестве объектов исследования для углубления и развития квантовомеханических представлений о природе химической связи также далеко не исчерпаны. Главная цель настоящего обзора заключается в том, чтобы рассмотреть наиболее общие и широко применяемые характерные методы синтеза алленовых соединений. Эти методы можно подразделить нд три группы первая группа включает те методы получения, при которых алленовая группировка образуется в результате реакций отщепления из соответствующих молекул предельного или непредельного соединения вторая группа основана на использовании ацетиленовых соединений в реакциях прототропной изомеризации или анионотропной перегруппировки в основе третьей группы методов синтеза алленовых производных лежат реакции 1,4-присоединения галогенов, спиртов, аминов, галоидоводородов, водорода, литий-алкилов и других соединений к винилацетиленовой системе связей. [c.90]

    Б третьем разделе собраны.статьи по полимеризации ацетиленовых соединений и направленному синтезу мономеров. Обрап ает на себя внимание новое направление поисков в этой области — вовлечение в круг исследований функционально залгеш,енных ацетиленов и диацетиленов, работы в области привитых сополимеров, в частности на основе целлюлозы. Отражены также и новые работы по мономерам — продуктам реакции винилирования. [c.4]

    В 1906 г. А. Е. Фаворский описал реакцию взаимодействия фенилацети-лена с кетонами, идущую в присутствии твердого едкого кали с образованием ацетиленовых спиртов. В 1930 г. эта реакция им была распространена на ацетилен. Продолжая эти исследования, И. Н. Назаров с 1935 г. проводит исследования реакции присоединения к винилацетилену в присутствии едкого кали различных соединений, содержащих карбонильную группу, и полимеризации получающихся винилэтенилкарбинолов. [c.25]

    Пары амилена, смешанные с водородом, превраш(аются под действием электрических разрядов 3 озонаторе (приблизительно на 85%) в жидкие продукты, в которых преобладают насыщенные углеводороды типа s Hi, (или их изомеры) Газообразньши продуктами при этом являются ацетилен, аллилен, ви-нилацетилен и диацетилен. Из амилена, как чистого, так и смешанного с азотом, не было получено насыщенных углеводородов. Водород действует, повидимому, не только как гидрирующий, но и как дегидрирующий агент, связываясь с водородным атомом ненасыщенного углеводорода и вызывая соединение получающихся углеводородных остатков. Это обстоятельство объясняет образование соединений с удвоенным числом атомов углерода. Амилен претерпевает также ряд других превращений, в том числе перемещение связей, перегруппировки, циклизацию, молекулярное расщепление, образование простых и кратных связей и полимеризацию. На основании своих данных Meneghini и Sorgato не смогли провести грани между этими различными превращениями. Кроме того в условиях опыта имеют место реакции, ведущие к увеличению внутренней энергии, а потому эндотермический характер тройной связи ведет к образованию большого количества ацетиленовых углеводородов. При применении трубки, дающей коронирующий разряд, доля превращенного амилена оказалась значительно меньше, хотя происходящие изменения были более глубокими при этом происходит также выделение свободного угля. [c.293]


    Ацетилен и углеводороды, содержащие ацетиленовую тройную связь, могут быть заполимеризованы в присутствии активных катализаторов Циглера, полученных из металлоорганических производных металлов I— III групп, преимущественно алкилов алюминия, цинка, лития или алкилалюминийгалогенидов, и соединений переходных металлов IV—VIII групп, преимущественно галогенидов или алкоголятов титана, железа, ванадия и молибдена [99], Полимеризацию проводят при 20—80° и атмосферном или небольшом избыточном давлении. В случае газообразного мономера тина ацетилена можно использовать его смеси с инертными газами, например с азотом или с неполимеризующимися газами, нанример с водородом и метаном. [c.230]

    Вещества, в которых между соседними углеродными атомами осз ществляются о- и я-связи, называют соединениями с двойной связью. Вещества, в которых между соседними атомами углерода образуются а- и две я-связи, называют соединениями с тройной связью. Вследствие меньшей прочности я-связей углеводороды с двойными и тройными связями склонны к их раскрытию. По месту разрыва я-связей присоединяются различные атомы и атомные группировки. Из-за этого свойства такие углеводороды называют непредельными. Простейшим углеводородом с двойной связью между соседними атомами является этилен Нгс5 1СН2. Ряд производных этилена, образующихся при замещении атомов водорода в нем на радикалы предельных углеводородов, называют углеводородами этиленового ряда. Они объединяются общей формулой СиНап. Родоначальником углеводородов с тройной связью служа г ацетилен НС СН ц весь ряд, объединяемый формулой СпН2п-2, называют углеводородами ацетиленового ряда. Способностью непредельных углеводородов превращать я-связи в о-связи объясняется их способность к реакциям полимеризации [c.216]

    Ацетиленовые углеводороды, содержащие подвижной водород, в этих условиях вступают в реакции полимеризации. Электрофильное присоединение воды и кислот к ацетиленовым углеводородам в этих условиях протекает только в присутствии специальных катализаторов (ртутных и медных солгй). Енолы, образующиеся при присоединении воды к ацетиленам, перегруппировываются в карбонильные соединения. Из самого ацетилена образуется в основном ацетальдегид, а из замещенных ацетиленов получаются кетоны. Диацетилен в этих условиях образует дпацетил Под действием разбавленной серной кислоты винилацетилен полимеризуется в дивинпл-ацетилен [c.43]

    Выше (см. разделы III, В, к и IV, А) были рассмотрены реакции циклоолигомеризации ацетиленов, протекающие с сохранением связи с металлом и приводящие к образованию комплексов переходных металлов с циклическими лигандами различных типов (циклобутадиен, бензол и др.). Настоящий раздел посвящен каталитическим реакциям циклоолигомеризации и полимеризации ацетиленов, протекающим с образованием органических продуктов — производных. бензола и циклооктатетраена, а также линейных олигомеров и полимеров. Образование ароматических соединений и полимеров в качестве побочных продуктов часто наблюдается при синтезе ацетиленовых и других комплексов, о чем неоднократно упоминадось выше. [c.481]

    Возможна также полимеризация путем соединения двух молекул ацетиленовых углеводородов. Так, ацетилен при пропускании через раствор СиС1 и N6401 в соляной кисло [c.93]


Смотреть страницы где упоминается термин Ацетилен Ацетиленовые соединения, полимеризация: [c.277]    [c.121]    [c.118]    [c.281]    [c.713]    [c.567]    [c.253]    [c.102]   
Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8 (1966) -- [ c.40 , c.54 ]




ПОИСК





Смотрите так же термины и статьи:

Ацетиленовые полимеризация

Ацетиленовые соединения

Полимеризация ацетиленовых соединений



© 2025 chem21.info Реклама на сайте