Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ацетилен на палладии

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]


    Особенность атих примеров состоит и том, что единственный продукт, образующийся на первой стадии, способен в тех же условиях подвергаться дальнейшему превращению в той же реакционной системе. Следовательно, для достижения селективности необходимо остановить процесс на первой (пли, скажем, на второй) стадии. Этого можно добиться разнообразными способами. Например, и случае реакций (1) обе стадии суть реакции, вполне однотипные но химизму. Поэтому для обеспечения селективности гидрирования ацетиленов в олефины необходимо модифицировать катализатор так, чтобы двойные связи восстанавливались над ним существенно медленнее, чем тройные. Этому требованию отвечает катализатор Линдлара — палладий на карбонатах, частично дезактивированный добавкой аминов. [c.124]

    Непредельные соединения в присутствии платины или палладия присоединяют водород легко, что позволяет использовать данный метод для количественного определения кратных связей Тройная связь образует более прочные адсорбционные соединения с катализатором, вследствие чего гидрирование ацетиленов происходит ступенчато, вплоть до полного превращения тройной связи в двойную. Скорость гидрирования кратных связей существенно зависит от их положения в цепи, числа и природы заместителей. [c.235]

    Каталитическое гидрирование ацетиленов до олефинов рассмотрено в работах [1, 21. Наилучшим катализатором для гидрирования при комнатной температуре и атмосферном давлении является дезактивированный палладий. Этот благородный металл на карбонате кальция, дезактивированный ацетатом свинца и хинолином [c.125]

    Е- или 2-олефины с довольно высокой степенью стереоселективности можно получить восстановлением ацетиленов литием в жидком аммиаке, а также алюмогидридом лития в эфире [14] или гидрированием с использованием в качестве катализатора системы палладий-углерод-сульфат бария-хинолин [15] (А-3) [16]. 2-Олефины получают также превращением ацетиленов в винилсиланы (А-4а) [17] и последующим стереоселективным обменом силильной группы на водород (А-46) [18]. [c.52]

    Ароматизация происходит в результате дегидрирования, дегидроциклизации, дегидратации, изомеризации, конденсации и др. или является следствием нескольких процессов. Ее часто осуществляют в условиях катализа платиной, палладием, оксидами металлов. Так, ацетилен и его соединения превращаются в соответствующие замещенные бензолы, например  [c.49]

    Реакции сочетания ацетиленов с эфирами 3-иод-а,р-непредельных кислот или с трифлатами енолов эфиров р-кетокислот, катализируемые палладием (показано ниже), вне всяких сомнений, представляют собой наиболее короткий и прямой подход к 2-пиронам [87]. Циклоприсоединение (несогласованное) кете-нов к силиловым эфирам енолов также обеспечивает простой и прямой путь к полезным в синтетическом отношении производным 2-пирона [88]. [c.217]


    На другом заводе в Германии сырьем для получения этилена служит ацетилен, получаемый разложением водой карбида кальция. Ацетилен подвергают гидрированию на катализаторе-силикагеле, на который нанесено около 0,04% металлического палладия. В каждую печь загружают около 4 катализатора. [c.81]

    На палладиевом катализаторе ацетилен практически на 100 % гидрируется в этилен. Это объясняется тем, что ацетилен лучше адсорбируется на поверхности палладия, чем этилен, и поэтому происходит вытеснение молекул олефина с поверхности катализатора. [c.707]

    Ацетилен осаждает ацетиле нистый -палладий, растворимый в аммиаке, цианистом калии и бисульфите натрия. [c.569]

    Ацетилен СОз, Н3О Окись палладия [1078] [c.370]

    Комплексы ацетиленов и диолефинов участвуют главным образом в реакциях полимеризации эта тенденция наиболее заметна в случае комплексов никеля и палладия. Комплексы платины в основном не активны в реакциях полимеризации. В каталитической гидрополимеризации ацетилена наиболее активен никель, затем палладий и, наконец, платина. Остальные благородные металлы менее активны, чем платина. Таким образом, снова наблюдается корреляция между двумя областями. [c.473]

    Коллоидальные палладий и платина Коллоидальные иридий и осмий не адсорбируют ацетилен [c.267]

    Доказательства участия в реакциях гидрирования атомов водорода были получены и в опытах с ацетиленом. На катализаторе из сплава палладия с 5,9% (масс.) никеля при низких давлениях ацетилена этилен является единственным продуктом гидрирования водородом, поступающим через мембранный катализатор. Скорость образования этилена не увеличивается при нарастании количества водорода в газовой фазе, а подача смеси ацетилена с водородом при тех же условиях не приводит к гидрированию [70]. [c.112]

    Избирательная гидрогенизация ацетилена была использована в промышленности в двух направлениях. Во-первых, для превращения ацетилена, содержащегося в некоторых определенных крекинг-газах, в этилен. Этот процесс удобен тем, что газы содержат водород в количестве, достаточном для гидрогеиизации ацетилена. Во-вторых, для превращения более или менее чистого ацетилена в этилен. Последнее применение представляет особый интерес для стран, имеющих недостаточное количество природного газа. В Германии во время второй мировой войны ацетилен превращался в этилен в больших масштабах с выходом этилена около 90%, катализатором служил палладий на силикагеле. В течение 8 месяцев температура катализатора в процессе постеиенно повышалась от 200 до 300 , а затем катализатор регенерировался без выгрузки из реактора (на месте) смесью пара и воздуха при 600°. Катализатор выдерживает три регенерации [112]. [c.240]

    Ацетилен и его гомологи гидрируются медленнее олефинов, но промежуточно образующиеся олефины легко вытесняются с поверхности катализатора нз-за меньшей способности к сорбции и поэтому могут быть иолучеиы в качестве целевых продуктов. Селективное гидрирование до олефинов осуществимо при катализе платиной и палладием на носителях, а также молибдатами кобальта и никеля, железом н др. При большем времени контакта гидрирование идет до парафина  [c.498]

    Метан. Метан отходящих газов гидрогенизационных заводов в Гельзенкирхене и Шольвене перерабатывался на ацетилен электрокрекингом в Хюльсе. Общая продукция ацетилена превышала здесь 40 ООО т в год. Большая часть этого ацетилена перерабатывалась через уксусный альдегид, алдоль в дивинил. Но здесь же находилась и установка по гидрированию ацетилена в этилен над палладием на силикагеле, установка по выделению водорода глубоким холодом и др. В дуге напряжением в 7 ООО в получается ацетилен чистотой 97—98%. Его приходится подвергать весьма сложной очистке. Помимо водорода, окиси углерода и этнлена, такой ацетилен содержит следующие иримеси (вгр на 1 м ) H N 1—3, нафталина 1—3, бензола 1—6, диацетилена 15—20, сажи 20—25. Однако при этом процессе себестоимость ацетилена меньше, чем генерируемого из карбида кальцпя. [c.167]

    Наконец, нужно указать на селективное гидрирование ацетилена в этилен, которое проводили в Германии во время второй мировой войны (в Хюльсе и Гендорфе) [29]. Ацетилен предварительно очищали от следов сероводорода и фосфористого водорода обработкой хлорной водой. Очищенный ацетилен гидрировали при 270° и атмосферном давлении водородом, взятым в 50%-ном избытке, в присутствии специального палладиевого катализатора (0,01 % металлического палладия на силикагеле). Входящие в реактор газы разбавляли водяным паром, а температуру процесса регулировали тем, что в реактор впрыскивали воду в точках, расположенных вдоль оси слоя катализатора. Выходящие газы содержали 65% этилена их конденсировали и разделяли ректификацией по системе Линде—Бронна. Выход этилена равнялся 85%, считая на ацетилен побочными продуктами являлись этан и ненасыщенные С4- и Св-углеводороды. [c.125]

    Сакамото, Кондо и Яманака разработали простой метод получения индолов из этил-М-(о-бромфенил)карбаматов, включающий кросс-сочетание последнего с ацетиленами, катализируемое соединениями палладия [84]. Модификация аминогруппы в карбаматную существенна не только для осуществления указанного кросс-сочетания, но и для последующей циклизации, поскольку о-броманилин не вступает в эту реакцию, а о-бромацетанилид в процессе реакции с ТМ8-С=СН в присутствии Рс1 осмоляется. [c.54]


    Частичное восстановление более ненасыщенных исходных соединений откосится к давно известной группе методов синтеза олефинов. Наиболее важным примером является восстановление ацетиленов (уравнения 26—29), при котором обычно возможен одновременный контроль положения и стереохимии двойной связи. Особенности этих реакций хорошо известны, и мы не будем углубляться в детали. Дизамещенные ацетилены можно восстановить до гранс-олефпнов с довольно высокой стереоселектнвностыо действием натрия в жидком аммиаке (уравнение 26), либо, что менее известно, нагреванием с алюмогидридом лития в эфирном растворе при 125—130°С (уравнение 27) [29]. Превращение дизамещенных ацетиленов в цис-олефины можно осуществить гидроборированием с последующим протолизом (уравнение 28) (те же результаты можно получить, используя гидроалюминирование) или селективным каталитическим гидрированием [30] (см., например, уравнение 29). В качестве превосходного катализатора используют катализатор Линдлара (палладий на карбонате кальция, модифицированный тетраацетатом свинца), хорошо работающий даже в случае сложных соединений, содержащих другие ненасыщенные группы применяют также гомогенный катализатор (РЬзР)зКиС12 [31]. [c.185]

    Катализируемая палладием реакция ортео-иодарилальдегидов с ацетиленами приводит к образованию изохинолинов, при этом происходит отщепление заместителя у атома азота [131]. Необычный способ синтеза хинолина связан с образованием на ключевой стадии связи между бензольным кольцом и атомом азота. Взаимодействие оксимов 2-арилэтилкетонов с перренатом тетра- -бутиламмо-ния приводит к образованию хинолинов. В зависимости от строения ароматиче- [c.189]

    В большинстве случаев в синтезах азаиндолов в качестве исходных соединений используют пиридин, а сами реакции аналогичны таковым для получения индолов, которые уже обсуждались выше. Однако реакция Фишера для пиридилгид-разонов гораздо менее удобна и полезна, чем в случае фенилгидразонов не находит широкого применения и реакция Маделунга. Наиболее успешные методы — катализируемые палладием реакции сочетания ацетиленов с аминога-логенопиридинами в виде одно- [318] или двухстадийного [319] процесса. Исходные аминогалогенопиридины обычно получают с использованием прямого металлирования. [c.467]

    Карбонилирование олефинов. В классической работе Реппе [21 по карбонилированию ацетиленов было найдено, что наилучшим катализатором является карбонил никеля, применение которого позволяет проводить реакцию в относительно мягких условиях (30 атм, 170"). Однако при карбонилировании олефинов в присутствии этого катализатора требуются гораздо более л<есткие условия (200—300 атм, 250—320°). В связи с этим группа немецких химиков [3] предприняла поиски более эффективного катализатора. В частности, исследовались соединения палладия, так как они образуют комплексы с олефинами. Было найдено, что Т. особенно активен и в его присутствии карбокилироваиие мол<но проводить при темпера- [c.285]

    Истинная кинетика реакции характеризуется первым порядком по водороду и нулевым порядком по ацетилену и этилену. Очевидно, что если наблюдаются диффузионные ограничения в отношении ацетилена, то гидрирование будет протекать в глубине гранулы. Эксперименты Марса и Горгельса показали, что задача может быть решена различными путями, основанными на теории. К числу этих путей относятся использование широкопористых катализаторов нанесение палладия тонким поверхностным слоем на гранулу работа при низких температурах. Последняя должна быть достаточно низкой для того, чтобы уменьшить скорость реакции до значения, соответствующего Т) a 1. [c.214]

    Палладий и платина не производят значительной адсорбции ацетилена адсорбированный ацетилен не остается неизмененным, а превращается в высокомолекулярные соединения, окружающие металлы, инактивируя их, т. е. загедляя дальнейшую адсорбцию и ослабляя каталитическую активность [c.267]

    Гидрогенизация ацетилена в парафиновом масле температура 80— 100° реакция начинается при комнатной температуре ацетилен и водород берут в отношенин 1 2 температура 200° выход 80 /о Г идрогенизация ацетилена Никель с кизельгуром, активированный двуокисью тория или окисью алюминия Платина (коллоидальный палладий) 1363 [c.246]

    Карбид закисной ртути, серое взрывчатое вещество состава aHg, Н2О, готовится пропусканием ацетилена через водные растворы уксуснокислой закиси ртути в тем ноте . Из растворов золота, палладия и ос.мия ацетилен осаждает мелаллы или в свободно м состоянии, или в виде двойных соединений, но совершенно не реагирует с солями железа, никеля, кобальта, свинца, кадмия, платины, иридия, родия, цинка, мышьяка или олова. [c.729]


Смотреть страницы где упоминается термин Ацетилен на палладии: [c.239]    [c.264]    [c.213]    [c.308]    [c.236]    [c.65]    [c.241]    [c.242]    [c.455]    [c.225]    [c.669]    [c.513]    [c.669]    [c.277]    [c.331]    [c.415]    [c.472]    [c.247]    [c.86]    [c.90]    [c.131]    [c.147]   
Инфракрасные спектры адсорбированных молекул (1969) -- [ c.47 , c.152 , c.156 , c.162 , c.163 , c.163 , c.362 , c.362 , c.476 ]




ПОИСК





Смотрите так же термины и статьи:

Палладий

Палладий палладий



© 2024 chem21.info Реклама на сайте