Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хинолин образование

    Эта реакция включает гомогенное расщепление молекулы водорода. В реакциях гетерогенной каталитической гидрогенизации большая затрата энергии (103 ккал), необходимая для расщепления 1 моля водорода, пополняется за счет энергии, выделяющейся при образовании связей водород—металл. При установлении соответствующего контакта между основным компонентом реакции и поверхностью катализатора в принятых условиях процесса атомы водорода переходят к акцептору по механизму, пока еще мало изученному. Примеры гомогенной гидрогенизации исключительно редки. Кэлвин [3J описал подобную систему, в которой проводится восстановление водородом хинона в растворе хинолина с использованием в качестве катализатора ацетата одновалентной меди. При детальном кинетическом изучении этой реакции Велер и Миле [24] обратили внимание на поразительное сходство между активацией водорода ацетатом одновалентной меди и активацией водорода в условиях оксосинтеза. Эти исследователи выступили в поддержку механизма активации, предложенного Кэлвиным, который они записали следующим образом  [c.300]


    Определено [185] изменение константы скорости крекинга от добавления в сырье азотистых оснований. Как видно из табл. 40, при добавке 0,1 вес. % хинолина скорость дезактивации катализатора несколько уменьшается. Константы скорости крекинга газойля (ко) и образования бензина (к ) уменьшаются при этом почти вдвое. Уменьшается и константа скорости крекинга бензина (йг). На селективность крекинга хинолин почти не влияет. [c.132]

    Химические превращения азотсодержащих соединений с разрушением структуры происходят в жестких условиях. В составе нефтяных топлив при отсутствии кислорода азотсодержащие соединения стабильны до 475—500 °С. В контакте с кислородом воздуха пиридины, хинолины, пирролы, наряду с малостабильными сернистыми соединениями постепенно окисляются с образованием в топливах смол и осадков. Содержание азота в смолистых отложениях на топливных фильтрах значительно выше, чем в фильтруемом топливе и достигает более 1,7 % [204]. [c.256]

    Сульфирование хинолина и его производных. Учитывая трудность введения сульфогруппы в молекулу пиридина, при сульфировании хинолина, как и следовало ожидать, замещение происходит в бензольном ядре. Серная кислота не реагирует с хинолином при 100° реакция начинается с 220—230° и приводит к образованию 8-сульфокислоты [900]. При 300° получают с хорошим выходом 6-сульфокислоту. Из этих данных можно полагать, что при 200° 8-сульфокислота перегруппировывается в 6-изомер. [c.136]

    Начало мезофазных превращений, соответствующее возникновению в пеке веществ, нерастворимых в хинолине, наблюдается при температурах, меньших начала образования площадки на кривой ЭПР (рис. 2-31, 33). [c.90]

    Фильтрацией пека от веществ, нерастворимых в хинолине, можно значительно снизить его вязкость. После начала увеличения вязкости может появиться ее анизотропия в связи с возможным образованием анизотропной мезофазы и предпочтительным расположением в объеме связующего осей больших молекул. [c.118]

    В то же время увеличение содержания в связующем ф])акции, нерастворимой в хинолине, выше 5-15% резко снижает его пластифицирующие свойства в смесях (рис. 2-44). Одновременно с этим подавляется образование каркаса из мезофазы, что ограничивает рост вязкости до 370 С. [c.118]

    Образование акролеина из глицерина можно подтвердить тем, что анилин, взаимодействуя в аналогичных условиях с готовым акролеином, также образует хинолин (выход 70%)- [c.551]

    Реакция завершается окислением образовавшегося 1,2-ди-гидрохинолина присутствующим в реакционной смеси нитробензолом, причем последний количественно восстанавливается до анилина, который затем также реагирует по описанному механизму с образованием дополнительных количеств хинолина. [c.554]


    Взаимодействие бензойной кислоты с анилином, о- и га-толуидином ио изменению проводимости и плотности исследовал А. В. Басков и установил образование соединения типа АВ. При изучении взаимодействия бензойной кислоты с хинолином и пиридином он установил на основании термического анализа соединение состава АВ, а по изотермам электропроводности — состава А2В (А — кислота). [c.252]

    Поясните, почему при окислении хинолина затрагивается преимущественно бензольное кольцо с образованием хинолиновой кислоты, а при окислении 2-аминохинолина — пиридиновое кольцо с образованием фталевой кислоты  [c.136]

    В последние годы изучению азотистых соединений уде.тгяется все большее внимание, главным образом потому, что выяснилось их отрицательное влияние на катализаторы при деструктивной переработке нефти [120, 121]. Имеются также указания на то, что соединения типа пиррола, хинолина и пиридина понижают стабильность нефтепродуктов и являются причиной образования нерастворимых осадков [122]. [c.42]

    Получение циклогексенов (с обычными ограничениями) можно проводить путем дегидрогалоидирования циклогексилхлоридов, дегалоиди-рования дигалоидпроизводных, имеющих два соседних атома галоида, а также дегидратацией циклогексанолов. Получерие цикло гексадиенов иногда осложняется изомеризацией, полимеризацией, ароматизацией и образованием перекисных соединений. При синтезе циклогексенов в качестве дегидрогалоидирующего реагента обычно используются хинолин или спиртовые растворы щелочей. Для превращения в циклоолефины дигалоидпроизводных с соседними атомами галоидов используют цинк. При дегидратации циклогексанолов использовались все общие методы. [c.470]

    Пиридиновые производные при реакции с водородом разлагаются, образуя молекулы углеводорода и аммиака (реакция 1). Производные хинолина реагируют, давая молекулы ароматического (реакция 2) или нафтенового (реакция 3) углеводорода и аммиака. Гидрирование производных пиррола сопровождается раскрытием кольца с образованием соответствующего углеводорода п молекулы аммиака (реакция 4). Взаимодействие индолов с водородом аналогично реакции производных хинолина и ведет к образованию аммиака и ароматического или нафтенового углеводорода (реакции 5 и 6). При реакции гидрирования производных карбазола возможно образование наряду с аммиаком ароматтиче-ского, нафтено-ароматического или нафтенового углеводорода (реакции 7—9). [c.295]

    Схема реакций гидрирования азотсодержащих соединений показывает, что оно идет с разложением молекулы гетеросоединения в результате разрыва связей углерод — азот и сопровождается образованием молекулы аммиака и соответствующего углеводорода. В этом смысле реакции азотсодержащих соединений сходны с реакциями гидрирования соединений серы. Существенное различие заключается в том, что соединения азота заметно более устойчивы в условиях гидрирования, разложение их наступает при более высоких температурах и давлениях. Так, многие серосодержащие соединения довольно легко разлагаются уже при температуре 280 °С и давлениях до 5 МПа разложение пиридина и хинолина наблюдается при температурах выше 350°С и давлениях 10—20 МПа. Нейтральные азотистые соединения более устойчивы, чем основные. Пиррол и его производные гидрируются при высоком давлении и температуре 400 °С, еще более устойчивы производные карбазола. С увеличением молекулярной массы устойчивость соединений азота надает, так что разложение высокомолекулярных соединений азота наблюдается уже при простом нагревании. Тем не менее для осуществления деазотирования в целом требуются более жесткие условия гидрогенизациоиного процесса. При проведении процесса в конкретных условиях глубина очистки от азотсодержащих соединений, как правило, меньше глубины обессеривания. [c.295]

    Реакции изомеризации включают стадии дегидрирования и поэтому маловероятны в условиях высокого давления водорода. Протекание реакций образования первичных и вторичных аминов доказывается тем, что примерно половина оснований, экстрагируемых 10%-ной На804, ацетилируется, т. е. представляет собой смесь первичных и вторичных аминов Однако эти реакции не могут играть большой роли в явлении повышения основности азотсодержащих соединений, так как производные пиридина и хинолина и до гидрирования являются сильными основаниями, а содержание производных пиррола невелико (см. табл. 49). [c.212]

    Исследование продуктов гидрогенизации хинолина показало что как в присутствии катализатора, так и в его отсутствие частично-гидрируется бензольное кольцо хинолина с образованием 5,6,7,8-те-трагидрохинолпна. Рарее при использовании в качестве катализаторов соединений никеля, молибдена и вольфрама образование этого-продукта не наблюдалось. Количество 5,6,7,8-тетрагидрохинолина растет с увеличением продолжительности опыта, а в мягких условиях (430 °С, без выдержки) хинолин превращается только в 1,2,3,4-тетрагидрохинолин. Эти наблюдения дают возможность предположить, что 5,6,7,8-тетрагидрохинолин образуется за счет изомеризации 1,2,3,4-тетрагидрохинолина. Прямой опыт гидрогенизации последнего подтвердил возможность такой изомеризации Характерно, что в этом гидрогенизате не был обнаружен [c.217]


    Гидрогенолиз гетероорганических соединений, к числу которых относятся серусодержащие (тиофены, дибензотиофены, нафтобензотиофены, алифатические и циклические сульфиды, дисульфиды, меркаптаны) кислородсодержащие (фенолы, алифатические спирты, нафтеновые кислоты, гидропероксиды) азотсодержащие (пиридины, хинолины, пирролы, индолы, карбазолы) и металлорганические соединения. Серу-, кислород- и азотсодержащие соединения гидрируются с образованием углеводорода [c.233]

    Качественные реакции на акридин в присутствии гетероциклических и алифатических аминов в литературе отсутствуют, а количественные [1, 2, 3] требуют значительного времени и большого, количества р сходного вещества на анализ. Предлагаемая качественная реакция на акридин с четыреххлористым оловом, проста-в исполнении, обладаег высокой чувствительностью, позволяет определять акридин в присутствии индола, карбазола, пиридина, бензилпиридина, 2-метил-5-этилпиридина, хинолина, хинальди-на и бензохинолина. Пиридин, хинолин и их производные, а так же индол с четыреххлористым оловом вступают в реакцию с образованием белых кристаллических осадков карбазол с четыреххлористым оловом не взаимодействует. Присутствие алифатических аминов не мешает определению акридина, т. к. вышеназванные амины образуют с четыреххлористым оловом бесцветные осадки [4]. [c.121]

    По данным [16], при очистке раствора прессованного нафталина в толуоле под действием хлорида алюминия селективно удаляются индол и хинолин. Тионафтен начинает удаляться при температурах выше 50 °С. Если в сырье содержится 1% тионафтена, его концентрацию удается онизить до 0,2% в присутствии 3% хлорида алюминия. Чтобы избежать образования динафтила, очистку рекомендуют вести при температурах не более 85—90 °С и малом времени контакта (не более 15 мин). Однако хлорид алюминия не нашел широкого распространения из-за выделения хло- [c.285]

    Выделение п-ксилола с помощью клатратных соединений. В последние годы был открыт класс неорганических комплексных соединений, которые способны образовывать молекулярные соединения с углеводородами [105]. Они получили название клатратных соединений [106]. Наиболее пригодны для образования клатратных соединений с углеводородами комплексы общей формулы МР4Х2, где М — элемент переменной валентности Р — пиридиновый остаток X — анион. Из ионов металлов наилучпше результаты дают двухвалентные никель, кобальт, марганец и железо. Наиболее пригодные азотистые основания — замещенные в 3- или 4-положении пиридины, а также хинолины. Анионом может быть простой одноатомный ион — хлор или бром, или многоатомный ион — тиоцианат, формиат, цианат, или нитрат [76, с. 235—298, 107]. [c.129]

    При обработке хинолина 10—20%-ным олеумом [901] при 125—130° образуется смесь 5-,7- и 8-сулъфокислот, тогда как при 170—180° остаются лишь 5- и 8-изомеры, причем последний составляет больше половины реакционной емеси [902]. Продолжитель ное нагревание моносульфокислот с олеумом в запаянной трубке приводит к образованию дисульфокислот [903]. [c.136]

    Действие большинства ингибиторов травления связано с образованием на поверхности металла адсорбционных слоеб, по-видимому, не толще одного монослоя. Они существенно препятствуют разряду ионов Н+ и переходу в раствор ионов металла. В частности, иодиды и хинолин именно таким образом ингибируют коррозию железа в соляной кислоте [31 ]. Некоторые ингибиторы затрудняют в большей степени протекание катодной реакции (увеличивают водородное перенапряжение), чем анодной, другие— наоборот, однако в обоих случаях адсорбция происходит, вероятно, по всей поверхности, а не на отдельных анодных или катодных участках, и в какой-то степени тормозятся обе реакции. Следовательно, при введении ингибитора в кислоту не происходит значительного изменения коррозионного потенциала стали (<0,1 В), в же время скорость коррозии может существенно уменьшаться (рис. 16.3). [c.269]

    В состав азотистых соединений входят ароматические амины, третичные соединения ряда пиридина, хинолина, пир-ролы, индолы. Склонность к образованию смолистых веществ )шеличивается за счет возможного присутствия непредельных структур в циклических азотистых соединениях. [c.34]

    При нагревании ализаринового оранжевого (или смеси ализаринового оранжевого с аминоализари-ном) с глицерином и концентрированной серной кислотой происходит образование пиридинового кольца, аналогично образованию хинолина по Скраупу (ср. стр. 1020) [c.723]

    При дегидрировании декагидрохинолина над платинои при высокой температуре (300°) было обнаружено образование Вг-тетрагидрохино-лина, т. е. хинолина с гидрированным бензольным ядром. Однако проще получать Вх-тетрагидрохинолины конденсацией эфира р-аминокротоно-вой кислоты с 2-оксиметиленциклогексапом  [c.1022]

    Винилхинолин. Юг неочищенного иодгидрата 4-(Р-иодэтил)-хинолина, содержащего 0,95 г красного фосфора, и 100 мл ацетона Harj e-вают до кипения и к кипящей жидкости приливают воду (около 15 мл) до образования раствора. Отфильтровывают фосфор, промывают его 20 мл горячей смеси воды и ацетона (1 1), прибавляют к фильтрату 60 мл 15%-ного раствора едкого натра и затем такое количество воды (около 90 мл), чтобы образовался однородный прозрачный раствор. Смесь кипятят 1 час с обратным холодильником, после чего перегоняют с водяным паром до тех пор, пока капли дистиллята не станут прозрачными (около 600 мл) меняют приемник и отгоняют еще 600—700 мл дистиллята. [c.262]

    По поведению в растворителях и при нагревании ме-зофаза может быть 1) нерастворимая и неплавкая, 2) растворимая и 3) плавкая [2-82]. Установлено, что способностью к образованию ламелярной микроструктуры коксов обладает только мезофаза, способная к растворению, в частности в хинолине, и к плавлению ниже 500°С. Она относится к классу лиотропных жидкокристаллических полимеров. [c.39]

    Другим характерным отличием сферолитовых агрегатов в коксе, полученном из остатков фильтрации гидравличной смолы, от фрагментов со слоистой структурой в коксе фильтрата той же смолы является микротвердость и плотность. Микротвердость этих прокаленных коксов равна примерно 1,95-2,05 и 0,65-0,85 ГПа и пикнометрическая плотность 2020 и 2100 кг/м соответственно [2-32]. Аналогичные образования наблюдаются и в пековом коксе, полученном из фракции, нерастворимой в хинолине. Сферолитовые агрегаты имеют повышенную сопротивляемость к окислению по сравнению с окружающим их веществом. [c.58]

    Удаление нерастворимых в хинолине веществ приводит также к очистке пекового кокса от минеральных примесей и обусловливает образование при коксовании описанной выше ламелярной структуры кокса с диаметром ламелей более 70 мкм (крупнофибриллярной микроструктуры) [2-47]. [c.76]

    Как показано в [2-49], хорошо ориентированная ламелярная микроструктура (рис. 2-35) с высокой степенью упорадочения кристаллитов при нагревании до 2100 С получается при двухстадийной фильтрации расплавленного каменноугольного пека при 350°С. В первой стадии выделяется г фракция, растворимая в хинолине и нерастворимая в толуоле, а во второй, при прохождении остатка через пористый сепаратор, образуется высокоориентированная структура мезофазы по схеме на рис. 2-37. Из нее при коксовании получается кокс с ламелярной микроструктурой и с резко пониженным содержанием микропор. В [2-50] приведены результаты рентгеноструктурного исследования карбонизации одного из компонентов каменноугольного пека — антрацена. Показано, что образующаяся из антрацена ме зофаза состоит из конденсированных димеров и тримеров, сохраняющихся до образования других ароматических структур выше 450°С. Предполагаемые модели структуры полимера, образующегося при пиролизе антрацена на стадии формирования мезофазы, показаны на рис. 2-23. [c.77]

    Существенным отличием мезофазы, растворимой в хинолине, является наличие в ней нафтеновых и алкильных групп, перешедших из исходного пека. Частично нафтеновая структура мезофазы может быть получена в реакциях конденсации пека с гидрирующими добавками, в частности с упоминавшимся А1С1з [2-86]. Эффективной добавкой, тормозящей коалесценцию мезофазы и способствующей образованию изотропного кокса, являются частички сажи. Они концентрируются на поверхности мезофазных сфер и блокируют их рост. [c.99]

    Однако, имея одинаковую растворимость, пеки могут отличаться по составу и химической структуре. Например, вещества, растворимые и нерастворимые в бензоле, полученные из пеков различного происхождения, имеют значительные отличия по своей молекулярной массе и химическому составу, несмотря на их одинаковую растворимость. Это свидетельствует о том, что молекулярные ассоциации в пеке определяют растворимость его фракций. При близких значениях планарности и слабых отличиях в топологии с увеличением молекулярной массы и ароматичности фракций для их растворения требуются более сильные растворители (табл. 2-11). Следовательно, с увеличением относительной молекулярной массы фракций силы молекулярной ассоциации возрастают и растворимость снижается. Кроме того, растворимость сильно связана со структурой молекул, входящих в соответствующие фракции. Чем планарнее молекула, тем меньше ее растворимость. Фракции пека, имеющие относительно высокую растворимость, относятся к соединениям оли-гоариленового типа. При нагревании, когда часть из них переходит в ароматические соединения с планарной структурой, их растворимость резко снижается за счет образования аг-фракции, растворимой в хинолине и нерастворимой в толуоле. [c.113]

    Как видно из приведенных выше данных, в пеке 1 термообработка при 400 С приводит к резкому увеличению веществ, нерастворимых в хинолине, в то время как в пеке 2 оно незначительно. Это объясняется тем, что при повышенном содержании этих веществ до обработки при 400 С подавляется образование мезофазы. При этом в начальной стадии содержание повышенного количества фракции, нерастворимой в хинолине, благоприятствует образованию зародышей мезофазы, а в дальнейшем нре пятствует их росту. [c.124]

    Углеводороды в нефти представлены алканами, циклоалканами, голоядерными ароматическими углеводородами и структурами смешанного строения, состоящими из ажановых, циклоалкановых и ароматических фрагментов в различных сочетаниях [3...5,7...13,31,52,64]. Гетероатомные органические соединения нефти представлены в основном соединениями серы (меркаптаны, сульфиды, дисульфиды, тиофены), кислорода (карбоновые кислоты, фенолы, эфиры, лактоны и гетероциклические соединения) и азота (хинолины и пиридины, карбазолы, индолы, пирролы, порфирины и вещества, не извлекаемые минеральными кислотами) [3..8,31,52,53]. В нефтях обнаружено около 50 различных элементов - Ы, N3, К, Си, Ао, Аи, Ве, М , Са, 2п, 8г, Сб, Ва, Hg, Ка, В, А1, Оа, 1п, Ьа, Т1, 51, Т , Се, 5п, РЬ, V, А , 5Ь, В1, С, Мп, Ре, Со, N1, Мо, Ки, С1, Вг, I, Се, N6, ТЬ, и и другие [5,6,14,32,33,64], способных к образованию элементоорганических соединений [65]. [c.13]

    Пиридин и другие азотсодержащие гетероциклические соединения можно аминировать с помощью амидов щелочных металлов, этот процесс носит название реакции Чичибабина [170]. Атака нуклеофилом всегда происходит по положению 2, если же оба этих положения заняты, атаке подвергается положение 4. Нитросоединения в эту реакцию не вступают [171]. Для реакции используют также замещенные амиды щелочных металлов, например пиперидид натрия (14). Механизм, по-видимому, аналогичен механизму реакции 13-17. Существование промежуточно образующихся ионов типа 15 (при реакции с хинолином) подтверждено данными ЯМР [172]. Образование как интермедиата арииового аналога пиридина исключается на [c.34]


Смотреть страницы где упоминается термин Хинолин образование: [c.18]    [c.18]    [c.184]    [c.231]    [c.30]    [c.30]    [c.39]    [c.24]    [c.499]    [c.58]    [c.207]    [c.326]    [c.49]    [c.62]    [c.268]   
Химия и технология химико-фармацевтических препаратов (1954) -- [ c.179 ]




ПОИСК





Смотрите так же термины и статьи:

Хинолин

Хинолинии



© 2025 chem21.info Реклама на сайте