Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нептуний выделение

    Разработан мембранный метод выделения и определения нептуния в природных объектах [112[. Концентрирование нептуния проводят с помощью тефлоновой мембраны (с1 ор = 0,05 мкм), импрегнированной три-226 [c.226]

    В первых опытах по выделению плутония и нептуния [531] восстановленные сернокислые растворы обрабатывали броматом для окисления Pu(III) в Pu(IV), Np(lII) и Np(lV) в Np(VI), [c.65]


    Старик с сотр. [211] определили оптимальные условия выделения нептуния с осадком фениларсоната циркония и разработали следующую методику отделения Ы р(IV) от Ри(1П). [c.280]

    Хайд [230] указывает на две возможности выделения плутония и нептуния из солянокислых растворов. [c.365]

    Рид и Туркевич [571, 839] получили совпадающие данные по определению урана по Кр " и Ва в каменных и железных метео-.ритах. Облучение проводили потоками 10 —10 л/сл1 -сб/с в течение 3—5 дней. Для определения химического выхода нептуния при выделении и очистке применяли носитель Кр в количестве 50— 100 имп/мин. В случае железных метеоритов, как отмечают сами авторы, получены сильно заниженные результаты (---1,5-10 % и). При определении урана в каменных метеоритах по Ва активность последнего вычисляли по активности Ьа , выделенного из препарата бария после достижения радиоактивного равновесия. Прямое измерение активности Ва невозможно из-за большого влияния Ва , образующегося из стабильного бария, присутствующего в хондритах в количестве 3—4-10 %. Содержание урана в хондритах близко в среднем к 1,1 10 %, в ахондрите в 10 раз больше. [c.256]

    С водой многие металлы реагируют с выделением водорода. Практически не взаимодействуют с водой торий и протактиний, не образующие устойчивых ионов М "(водн), и нептуний, хотя все потенциалы восстановления М(П1) или М(1У) до металла отрицательны и в целом близки к соответствующим потенциалам лантаноидов. Все актиноиды растворяются в кислотах. [c.383]

    Изучена экстракция урана (VI), америция, нептуния (V) и (IV) и продуктов деления в условиях, оптимальных для выделения плутония. Было показано, что уран, америций, нептуний и большая часть продуктов деления в этих условиях практически не экстрагируются. Из продуктов деления (годичная выдержка) экстрагируются только цирконий и ниобий. [c.235]

    Самой крупной лабораторией института является лаборатория радиохимии, которую возглавляет Б. Ф. Мясоедов. Главные направления ее научной деятельности — изучение химии трансплутониевых элементов, разработка методов их выделения и определения. Особое внимание уделяется способам получения и использования необычных состояний окисления трансплутониевых элементов, например америция (И) и (IV). В качестве методов разделения особенно широко используют экстракцию и сорбционные приемы, лаборатория имеет немалые достижения в этой области. Кроме того, проведен больщой цикл исследований по аналитической химии протактиния, разработаны многочисленные методы его концентрирования, выделения и определения. Ведутся исследования также по химии нептуния, актиния и урана. [c.201]


    Наиболее часто эти соединения используют для выделения урана, нептуния и плутония из азотно- и солянокислых растворов. Положение элементов в ряду элюирования определяется их природой, а также состоянием окисления каждому соответствует отдельный пик на хроматограмме. Получены следующие ряды элюирования и(1У)>и(У1) Ыр(У)>Ыр(У1)>Мр(1У) Ри(П1)> >Ри(У1)>Ри(1У). [c.265]

    При выделении или очистке трансплутониевых элементов часто необходимо отделять плутоний (IV). В общем случае переработка облученных трансурановых элементов включает отделение матричных элементов, продуктов деления, выделение плутония (нептуния) и трансплутониевых элементов. Облучение 237 р Ат приводит к образованию смесей изотопов плутония [c.276]

    Выделение нептуния из урана, облученного нейтронами, методом распределительной хроматографии с обращенными фазами в системе трибутилфосфат — азотная кислота. [c.549]

    Выделение следовых количеств урана-237 й нептуния-239 из облученного в реакторе урана с применением экстракционной хроматографии. [c.555]

    Метод распределительной хроматографии с обращенными фазами для выделения нептуния-239, используемого при определении вероятности избежания [c.566]

    Измерение резонансного поглощения в уране-238 с использованием химических методов разделения для выделения нептуния-239, [c.566]

    Выделение нептуния-239 из продуктов деления и активации методом экстракционной хроматографии при определении микрограммовых и субмикрограммовых количеств урана. [c.568]

    Существенный вклад внесла аналитическая химия в решение такой важной проблемы современной науки, как синтез и изучение свойств трансурановых элементов. Предсказание химических свойств трансурановых элементов оказалось более сложным, чем для элементов, входящих в периодическую систему в ее старых границах, так как не было ясности в распределении новых элементов по группам. Трудности усугублялись и тем, что до синтеза трансурановых элементов торий, протактиний и уран относились соответственно к IV, V и VI группам периодической системы в качестве аналогов гафния, тантала и вольфрама. Неправильное вначале отнесение первого трансуранового элемента № 93 к аналогам рения привело к ошибочным результатам. Химические свойства нептуния (№ 93) и плутония (№ 94) показали их близость не с рением и осмием, а с ураном. Было установлено, что трансурановые элементы являются аналогами лантаноидов, так как у них происходит заполнение электронного 5/- слоя, и, следовательно, строение седьмого и шестого периодов системы Д. И. Менделеева аналогично. Актиноиды с порядковыми номерами 90—103 занимают места под соответствующими лантаноидами с номерами 58—71. Аналогия актиноидов и лантаноидов очень ярко проявилась в ионообменных свойствах. Хроматограммы элюирования трехвалентных актиноидов и лантаноидов были совершенно аналогичны. С помощью ионообменной методики и установленной закономерности были открыты все транс-кюриевые актиноиды. Рекордным считается установление на этой основе химической природы элемента 101 — менделевия, синтезированного в начале в количестве всего 17 атомов. Аналогия в свойствах актиноидов и лантаноидов проявляется также в процессах экстракции, соосаждения и некоторых других. Экстракционные методики, разработанные для выделения лантаноидов, оказались пригодными и для выделения актиноидов. [c.16]

    Советский хпмик И. Н. Крот сначала в Обнинске, а потом в Институте физической химии АН СССР (Москва) работал над выделением изотопов Ыр в индивидуальном состоянии. Сначала Крот разработал модель такого выделения в лаборатории. Потом на заводе получил 2 г НрОа. Впервые в Советском Союзе возникла возможность изучать свойства Нр, работая с весовыми количествами индивидуального препарата. Вскоре в соавторстве с В. И. Спицыным и А. Д. Гельман были синтезированы соединения семивалентного нептуния. [c.230]

    Очень небольшие количества этого изотопа обнаружены в урановых рудах, что является следствием протекания приведенной выше ядерной реакции в естественных условиях. Изотоп Ыр и возглавляет искусственный радиоактивный ряд 4и+1, который заканчивается в отличие от естественных рядов не свинцом, а изотопом В чистом виде нептуний был выделен в 1944 г. путем барийтермического восстановления Npp4. [c.441]

    Наряду с солями нептунилов КрО и КрО известны и соли катионов Np + и Np с кислородсодержащими кислотами перхлораты, нитраты, сульфаты. В виде кристаллогидрата выделен, например, Np (804)2-хНаО. Все они склонны к гидролизу, диспропорционированию и комплексообразованию. Наилучшим комплексообразователем является Мр +. Гидратированные катионы нептуния в растворах имеют характерную окраску Ыр + — голубую, Кр + — желто-зеленую, МрО. — зеленую, КрОа+ — розовую. [c.443]

    Максимально достижимое для нептуния и плутония (при сильном окислении их соединений в щелочной среде) семивалентное состояние не является для этих элементов одним из наиболе характерных. Тем не менее получены некоторые отвечающие ему соли, например, зеленая Ваз(МрОб)2 и синяя Ваз(РиОб)2. Относительно устойчивее Ыр для которого был выделен и черный гидроксид Ыр02(0Н)з, обладающий амфотерными свойствами. Производные и особенно Ри являются очень сильными [c.370]


    В этом методе используется способность шестивалентного плутония образовывать малорастворимый натрийплутонилаце-тат, изоморфный с натрийуранилацетатом. Трех- и четырехвалентный плутоний не соосаждается с натрийуранилацетатом. Ацетатный метод был предложен Ганом и Штрассманом [442] и применялся впервые для выделения нептуния. В дальнейшем [c.279]

    Изготовление слоев оксидов редкоземельных элементов, тория, урана, протактиния, нептуния и транснептуниевых элементов электроосаждением из неводных сред имеет неоспоримые преимуш,ест-ва по сравнению с водными растворами. Образуюш,иеся на катоде при электролизе в водной среде гидроксиды лантаноидов и актиноидов аморфны. При дальнейшей термической обработке они образуют оксидные слои с большим количеством структурных дефектов. При электролизе из органических растворов на катоде образуются кристаллические структуры, которые при прокаливании легко переходят, теряя органическую составляюш,ую, в кристаллические структуры оксидов РЗЭ и актиноидов. Кроме того, метод электроосаждення из неводных растворов характеризует большая скорость проведения процесса, полнота выделения металла, прочность сцепления о подложкой слоев толщиной 1—5 мг/см , равномерность распределения покрытия на больших площадях. Наилуч-шие результаты получены из спиртовых растворов нитратов и ацетатов РЗЭ и актиноидов. Растворимость солей данных металлов в органических растворителях низка, поэтому в основном применяют насыщенные растворы. Из-за низкой проводимости растворов и окисной пленки на электроде используются высокие напряжения (порядка сотен вольт), плотности тока низкие. Большое значение при подборе оптимальных условий осаждения имеют площадь электродов, расстояние между ними, объем электролита, предварительная обработка электродов. Катодный процесс сопровождается газовыделением, вызывающим образование неравномерной пленки. Для уменьшения газовыделения добавляют специальные добавки, в частности этиловый спирт [221]. Катодный продукт наряду с металлом и кислородом содержит обычно азот, водород и углерод. Результаты количественного анализа показывают загрязнение катодного осадка растворителем или продуктами его разложения, но не образование соединений определенной стехиометрии [1077]. При термической обработке катодного осадка происходит уменьшение объема и перестройка кристаллической решетки, в результате чего слои растрескиваются и осыпаются, и лишь в случае тонких слоев оказывается достаточно поверхностных молекулярных сил сцепления для сохранения прочной связи с подложкой. Для получения покрытий толщиной порядка 1—5 мг/см необходимо многослойное нанесение продукта [1060]. [c.156]

    Сравнительно широкое применение нашел метод электролитического выделения металлов (естествепных и искусственных изотопов) на подложки, в том числе плутония, америция, кюрия, урана, нептуния, полония, Со ", Ге , Ре , Ag , Ag , [c.170]

    Определение содержания " Кр в различных объектах проводят как по а-активности [9, 83], так и другими методами. Метод кулонометрии с разверткой потенциала позволяет определять 5-10 % нептуния в солях и оксидах урана без предварительного выделения [81]. В [82] предложен более чувствительный метод потен-циостатической вольтамперометрии, позволяющей относительным методом определять в присутствии урана 0,05-0,1 мкг нептуния при объеме раствора в ячейке 10-12 мл. Метод, основанный на люминесценции кристаллофосфора Сар2 Мр, позволяет определять 10 -10 г " Нр в пробах. Абсолютный предел обнаружения этим методом составляет 5 10г. Метод состоит в том, что измеряемое количество " Кр в виде азотнокислого раствора смещивается с порошком Са 2. Порошок высушивают и прокаливают при температуре ниже температуры плавления. Для возбуждения люминесценции Кр в Сар2 Np в данной работе использова- [c.291]

    Нитрат трилауриламина (ТЛА-НЫОз) в колонке с кель-Р использован [73] для выделения и определения нептуния (1У) в концентрированных растворах (облученного) урана. Актиноиды (ТЬ, Ра, Ыр и Ри) сорбируются в присутствии избытка урана из раствора состава 2 М НЫОз+ 0,1 М Ре304 в этом растворе плутоний восстанавливается до трехвалентного состояния. Колонку промывают 1 М раствором НЫОз, содержащим железо(II), а затем элюируют нептуний (1У) смесью серной и азотной кислот. Метод позволяет селективно отделять нептуний(1У) и приводит к хорошим результатам при анализе растворов, содержащих уран и нептуний в отношении >10 °, и при получении радиохимически чистого изотопа нептуния-239. [c.275]

    Дениг (И сотр. [14, 17] разработали схему последовательного выделения нептуния, урана и продуктов деления, В этой схеме на первой экстракционно-хроматографической колонке с ТБФ происходит. извлечение циркония, урана и нептуния из раствора НаСЮз в 8 М НМОз. На второй колонке с Д23ГФ(К из раствора МаСЮз в 9 М НС1 извлекаются ниобий, сурьма и иод. На третьей колонке, также заполненной Д2ЭГФК, из 0,1 М раствора НСГ извлекаются редкозем ельные элементы я молибден. Далее в каждой колонке производят разделение на отдельные компоненты с помощью избирательного элюирования. Полный процесс разделения, проводимый при повышенной температуре, требует менее 12 ч (включая радиохимическое определение) [14]. Некоторые из наиболее важных продуктов деления определялись рентгенофлуоресцентным методом [17]. [c.341]

    Для изучения р-аспада изотопов сурьмы их можно выделить из смеси продуктов деления в достаточно чистом виде за 1,5 ми . С этой целью из p a TBOpia облученного обр азца предварительно удал яют мещающий выделению сурьмы иод, окисляют сурьму хлоратом и сорбируют из 9 М раствора НС1 на колоике с диизобу-тилкарбинолом,. после чего 6 М р аствором НС1 удаляют из колонки нептуний сурьму элюируют водой [48]. Этот же метод применен для выделения сурьмы из облученного нейтронами теллура. Метод может быть модифицирован и иопользован в элютивяом (варианте в этом -случ ае элюируемые 9 М раствором НС1 изотопы теллура дают информацию о материнских изотопах сурьмы, удерживаемых на колонке [48, 49]. Таким образом был изучен распад изотопов сурьмы с. массой от 126 до 133 определен период полураспада aisb (23 мин) [48], обнаружены 47-линии и определен период полураспада (3,1—3,7 мин), относящийся или к или [c.356]

    Большинство применяемых реагентов и приборов описаны в предыдущих разделах. Раствор сульфамата железа (И) следует готовить ежедневно. Для измерения а-активности использовали высокоэффективный радиометрический прибор, снабженный одноканальным анализатором (Berthold, ФРГ) со сцинтилляционным пластмассовым детектором Orte площадью 400 мм . Для электролитического выделения нептуния применяли прибор (фирмы С. ЕгЬа ) с плексигласовыми ячейками катодом служил диск из нержавеющей стали диаметром 20 мм, а анодом —платиновая проволочка. Хроматографическое выделение нептуния проводили на колонке, имеющей внутренний диаметр 10 мм и снабженной кожухом для термостатирования. [c.377]

    Растворимость этого соединения в воде достаточно мала поэтому было предложено использовать колонку, заполненную микротеном и НХ70, для выделения нептуния и плутония из мочи [29]. Поскольку -НХ70 мало растворима в воде, можно было использовать умеренные объемы водного раствора, проводя предварительное соосаждение обоих радиоактивных элементов с фосфатами кальция и магния. [c.379]

    Аналитическое выделение следов нептуния из высококонцентрированных растворов урана в системе ТЛА—HNO3 с использованием хроматографии с обращенными фазами. [c.540]

    Применение трилауриламина в распределительной хроматографии. Часть I. Выделение нептуния из концентрированных растворов урана. [c.540]

    Для количественного разделения плутония (III) и урана (VI) можно применять элюирование 1,5 М HNO3. Плутоний при этом удерживается катионитом более прочно, чем ионы уранила [27]. Изучалось также разделение урана и нептуния [50]. С помощью разбавленной азотной кислоты производилось отделение тория от продуктов его распада [3] заключительная операция состояла в выделении тория из катионита раствором молочной кислоты. В неопубликованной работе Чоппина и Сиккеланда исследовано отделение актиния от радия. После стадии поглощения начинали элюирование 471 HNO3. Когда элюирование радия заканчивалось, концентрацию элюента увеличивали до %М и выделяли актиний в отдельную фракцию. [c.334]


Смотреть страницы где упоминается термин Нептуний выделение: [c.73]    [c.434]    [c.200]    [c.510]    [c.1350]    [c.1356]    [c.1364]    [c.256]    [c.510]    [c.511]    [c.462]    [c.37]    [c.211]    [c.264]    [c.276]    [c.380]    [c.381]   
Радиохимия (1972) -- [ c.379 , c.382 ]

Современная неорганическая химия Часть 3 (1969) -- [ c.3 , c.556 ]




ПОИСК





Смотрите так же термины и статьи:

Нептун

Нептуний



© 2025 chem21.info Реклама на сайте