Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Порядок реакций и лимитирующая стадия процесс

    Измерены поверхность и пористость углей до и после озонирования. Определены кинетические параметры и состав продуктов окисления бурых углей озоном в газовой и жидкой средах. Процесс протекает практически в стационарном режиме, поглощение озона составляет 90%. Окисление сопровождается выделением в газовую фазу оксидов углерода СО и СО2. Показано, что среда окисления оказывает значительное влияние на скорость и механизм процесса при этом начальные скорости процесса различаются в 4 раза. Кинетические кривые озонирования бурого угля, подвергнутого карбонизации, аналогичны необработанным углям. Однако, количество выделяющегося СО2 в случае карбонизованного угля ниже более, чем в три раза что указывает на активное образование поверхностных кислородсодержащих групп. Лимитирующая стадия процесса протекает на поверхности угля, о чём свидетельствует нулевой порядок реакции. [c.91]


    Подобные уравнения записываются и для Св и СЬ, Показатели степеней а и Ь в каталитических процессах, как правило, не совпадают со стехиометрическими коэффициентами суммарной реакции, а выражают коэффициенты уравнения лимитирующей стадии процесса, например, активированной адсорбции данного реагента (А или В) на катализаторе. Соответственно фактический общий порядок каталитической реакции п = а Ь обычно ниже формального порядка некаталитической реакции, определяемого ее молярностью. [c.78]

    М] [М]ч порядок реакции уменьшается и на верхнем пределе по давлению к становится независимой от [М], причем порядок реакции равен единице. Такое изменение величины константы скорости реакции и ее порядка соответствует смене лимитирующей стадии процесса. Вместо активации стадией, определяющей скорость диссоциации, становится внутримолекулярный распад. Уменьшение к при низких давлениях [уравнение (1.7)] иллюстрируется на рис. 1.1. Температурная зависимость к при постоянном давлении или постоянном [М] будет отличаться для различных областей давления. При низких давлениях температурная зависимость к определяется величиной к, а на верхнем пределе по давлению — комбинацией констант к 1к2)к . Подробнее температурная зависимость к обсуждается после более конкретного определения отдельных уровней энергии А и А.  [c.17]

    В настоящем задании предлагается по зависимости скорости образования кислорода от концентраций катализатора и пероксида водорода показать приемлемость той или иной модели механизма, сделать вывод о лимитирующей стадии процесса и определить порядок реакции в целом. [c.148]

    И наоборот, когда экспериментально найденный порядок реакции соответствует числу молей, участвующих в реакции, вполне возможно считать эту реакцию элементарным процессом действительно, если элементарная бимолекулярная реакция всегда имеет второй порядок, то в противоположность этому реакция второго порядка, происходящая между двумя молекулами, не обязательно должна быть элементарной бимолекулярной реакцией она может быть сложной реакцией, лимитирующая стадия которой бимолекулярна. [c.130]

    Это связано с близкими по величине активационными параметрами четырехцентрового механизма реакции, приводящего к образованию иодистого водорода и 8 2 механизма. По термодинамической стабильности расчеты предсказывают более высокую стабильность продуктов 8 2-реакции. При взаимодействии ацетилхлорида с метанолом энергия активации четырехцентрового механизма имеет существенно более низкое значение, чем энергия активации 8 2 механизма (81 и 178 кДж/моль соответственно). В результате реакция полностью сдвинута в сторону образования хлористого водорода. Такое различие в энергии активации 8м2 механизмов в зависимости от характера галогена связано с лимитирующей стадией процесса - образованием галогена. Различие в энергиях диссоциации связи С-1 и С-С1 имеет тот же порядок. [c.29]


    Видно, что ПО кислороду порядок реакции первый, а по этилену нулевой. Лимитирующая стадия процесса — изомеризация окиси этилена в ацетальдегид (стр. 76). Энергия активации реакций составляет (в ккал/моль и кДж/моль)  [c.219]

    Первый порядок реакции по мономеру и инициатору указывает, что бимолекулярное образование такого аддукта является лимитирующей стадией процесса полимеризации NKA В,Ь-лейцина или D,L-фенилаланина. По-видимому, после этой стадии происходит быстрое раскрытие кольца и декарбоксилирование. Анализ данных табл. Х.2 показывает, что ни константа роста, ни энергия активации процесса заметно не меняются при некотором изменении структуры растворителя. Очень низкий предэкспоненциальный множитель указывает, по-видимому, на значительную полярность переходного состояния по сравнению с исходным состоянием, что заставляет принять во внимание цвиттер-ионную структуру продукта присоединения (разд. 2). [c.555]

    Нулевой порядок по отношению к галогену указывает, что реакция с галогеном идет после медленной, лимитирующей стадии. В пользу того, что лимитирующей стадией в этом процессе является образование енола [c.490]

    Выражение (1.33) представляет собой формулу аддитивности диффузионных и химических торможений процесса. Очевидно, что она корректна при условии квазистационарности процесса и при выполнении условий (1.27), т. е. прп наличии равновесия на границах раздела фаз. К сожалению, возмон ность использования формулы (1.33) ограничивается лишь тем простейшим частным случаем, для которого эта формула была получена, так как если порядок реакции по переходящему компоненту отличается от 1 или если процесс существенно нестационарен, уже не удается провести разделение переменных величин и выразить общее сопротивление процессу в виде суммы отдельных сопротивлений. Поэтому, сравнивая константы скоростей отдельных стадий процесса, можно выделить из них лимитирующую и дать четкое определение области протекания только при указанных ограничениях. [c.20]

    Напишите кинетическое уравнение процесса. Каковы порядки реакции по ЗОг и Нг и каков общий порядок реакции Как изменится скорость реакции при увеличении общего давления в системе в 3 раза Предложите механизм, согласующийся с экспериментальными данными. Какая стадия является лимитирующей Предложите формулу промежуточного комплекса. [c.130]

    Реакции нулевого порядка встречаются обычно в гетерогенном катализе и всегда указывают на протекание сложной реакции, состоящей из нескольких последовательных стадий. В данном случае лимитирующей стадией, определяющей общую скорость процесса, является поверхностная реакция, сравнительно медленная и не зависящая от концентрации реагентов этим и объясняется нулевой порядок. Однако, если концентрация реагентов достаточно мала, то стадии, зависящие от концентрации, замедляются, так что их скорость будет меньше, чем скорость лимитирующей стадии. Тогда они становятся лимитирующими и порядок реакции начинает повышаться, заметно отличаясь от нуля. [c.68]

    При помощи вращающегося дискового электрода можно установить природу лимитирующей стадии электродного процесса. Так, если наиболее медленной стадией является стадия массопереноса, то ток прямо пропорционален /ш. Если же лимитирующая стадия не связана с подводом или отводом реагирующего вещества, то ток не зависит от скорости вращения электрода. В ряде систем при увеличении ш удается наблюдать переход от лимитирующей стадии массопереноса к замедленной стадии разряда или к замедленной гетерогенной химической реакции. В этих условиях по зависимости тока от со можно установить порядок гетерогенной реакции р и ее предельную скорость р при заданном потенциале электрода. Действительно, [c.178]

    Зависимость логарифма плотности тока от обратной температуры для трех видов поляризации приведена на рис. 192. Для процесса с концентрационной поляризацией прямые а, относящиеся к различным потенциалам, параллельны. Эффективная энергия активации не зависит от потенциала поляризации и равна 10— 12 кДж/моль. При химической поляризации прямые Ь, соответствующие различным потенциалам поляризации, располагаются веерообразно. Энергия активации электрохимической реакции понижается с ростом потенциала поляризации и при больших потенциалах, при большой скорости процесса приближается к энергии активации концентрационной поляризации. При химической поляризации энергия активации имеет тот же порядок, что и энергия активации химической реакции в растворах (40—80 кДж/моль). Действительно, при электрохимических реакциях потенциальный барьер, характеризуемый энергией активации, преодолевается не только за счет теплового движения молекул или ионов, но и за счет добавочной энергии, приобретаемой реагирующей частицей при ее прохождении через двойной электрический слой на поверхности электрода. Другим фактором, отличающим химическую поляризацию от концентрационной, является влияние перемешивания на скорость (плотность тока) электрохимического процесса. При концентрационной поляризации скорость процесса возрастает с перемешиванием особенно в области предельных токов, когда концентрация реагирующего вещества близка к нулю и лимитирующей стадией становится его доставка к электроду. Скорость электрохимических реакций с химической поляризацией не зависит от скорости перемешивания. [c.460]


    Нельзя руководствоваться стехиометрическими коэффициентами в формальном уравнении химической реакции, которое, как правило, выражает лишь суммарное количественное соотношение исходных веществ и продуктов, необходимое для составления материального баланса процесса. Следует вскрывать истинный механизм процесса, находить наиболее медленные лимитирующие стадии его и определять порядок реакции, по которому и должны быть записаны показатели степеней в уравнениях типа (11.2) и [c.44]

    Принцип лимитирующей стадии, согласно которому общая скорость любого сложного процесса, состоящего из ряда последовательных стадий, определяется скоростью наиболее медленной стадии. Выделение лимитирующей стадии позволяет объяснить во многих случаях экспериментально наблюдаемый кинетический порядок сложной реакции. [c.20]

    Если экспериментально определенный порядок реакции соответствует стехиометрическому уравнению реакции, можно считать ее элементарным процессом. Таким образом, элементарная бимолекулярная реакция всегда имеет второй порядок, но в противоположность этому реакция второго порядка, происходящая между двумя молекулами, не обязательно должна быть элементарной бимолекулярной она может быть сложной реакцией, порядок которой будет определяться самой медленной элементарной стадией, называемой поэтому лимитирующей стадией. [c.118]

    В задачу исследования кинетики электродных процессов входит выяснение лимитирующей стадии, а также таких важных электрохи- мических параметров, как порядок и характер электродной реакции 1 константы скорости определяющей (катодной либо анодной) реакции г [c.19]

    Определение по кажущемуся порядку реакции. Если он отличается от единицы, лимитирующей стадией является химическое превращение. Однако, если порядок реакции равен единице, вопрос о лимитирующей стадии остается открытым, так как процесс массообмена зависит от концентрации также в первой степени. [c.392]

    Порядок реакций гидрообессеривания по водороду (п ) может быть также различным в зависимости от свойств сырья и условий процесса. По мере роста парциального давления водорода (/ //,) газофазных процессах гидрооблагораживания 2 может изменяться от 1 до О в интервале /7// от 0,1 до 3,5 МПа (т. е. в зависимости от степени насыщения водородом поверхности катализатора). В жидкофазных процессах, в которых лимитирующей гидрообессеривание стадией является транспортирование водорода через пленку жидкости к поверхности катализатора, гидрогенолиз протекает по первому порядку по водороду вплоть до дав.дений 10 МПа. [c.307]

    Лимитирующей стадией процесса является вторая стадия. Если R — атом или простой радикал, то область концентраций М, в которой реакция имеет третий порядок, будет широкой вследствие большой скорости распада R2 или комплекса RM. В области высоких концентраций третьего тела (/JafM] 2> k i) скорость образования продукта рекомбинации будет следовать бимолекулярному закону Шр к = ilR] и лимитирующей стадией окажется первая стадия образования Ri или же комплекса RM. Таким образом, формально оба механизма могут приводить к однотипным кинетическим зависимостям, хотя смысл входящих в уравнения динамических параметров различен, как различно и существо протекающих процессов. [c.116]

    При сопоставлении электрокаталитической активности различных материалов следует учитывать целый ряд факторов. Прежде всего необходимо принимать во внимание зависимость скорости процесса от потенциала электрода-катализатора, она часто на разных электродах имеет разный наклон. Поэтому порядок активности будет зависеть от интервала потенциалов, в котором проводится сравнение. Сравнение следует проводить либо при заданном потенциале относительно одного и того же электрода сравнения, либо при равновесном потенциале для данного процесса, если этот потенциал известен или может быть рассчитан. Сопоставление при равновесном потенциале страдает тем недостатком, что проводится в условиях, существенно отличающихся от условий практического использования данного процесса. Далее необходимо принимать во внимание возможность существенного изменения свойств материала за счет структурных факторов. Кроме того, порядок активности может меняться при изменении температуры, при которой проводится процесс. Например, рутений, будучи пассивным в реакции электроокнсления метанола при 20° С, при 80° С по активности превосходит платину в некотором интервале потенциалов (О. А. Петрий, В. С. Энтина). Наконец, следует учитывать, что при изменении природы катализатора иногда происходит и смена лимитирующей стадии процесса. [c.297]

    Наблюдаемый порядок реакции позволяет считать, что диборан не является реагирующей частицей, а диссоциация комплекса боран-ТГФ не служит лимитирующей стадией процесса. Активационные параметры исключают участие в реакции свободного борана и приписывают активную роль ТГФ в переходном состоянии, в котором молекула ТГФ лищь частично отошла от борана [85а]. [c.265]

    С целью установления кинетического порядка по каждому и реагирующих веществ и энергии активации процесса были проведены опыты с различными концентрациями тиомочевины и щелочи при 15, 25 и 35° С. Кинетический порядок по тиомочевине равен минус три, по щелочи — плюс единица. Энергия активации процесса отложения сульфида серебра на стеклянной поверхности, покрытой пленкой AggS, равна 13,2 ккал/моль. Такой порядок величины энергии ак- гавации является характерным для химических реакций, лимитирующая стадия которых протекает в кинетическом режиме. [c.130]

    Это соответствует условиям, при которых основание амина, присутствующее в реакционной смеси в достаточном избытке, реагирует с азотистым ангидридом по мере образования, последнего. Другими словами, образование нитрозирующей частицы может стать в присутствии избытка амина лимитирующей стадией процесса, несмотря на то, что она является более быстрой по сравнению с реакцией iV-нитрозирования [6,8]. В этих условиях скорость диазотирования не зависит от-концентрации и природы амина, при условии, что р/Са амина больще 4. Кинетическое уравнение второго порядка процесса диазотирования было впервые получено Ганчем и Шю йаном [9], которые ошибочно предположили, что реакция имеет первый порядок по каждому реагенту. Правильная интерпретация полученных данных была дана только Хьюзом и Риддом. [c.1872]

    Все приведенные данные (за исключением кинетики реакций) в равной мере относятся к процессам гидрохлорирования хлоралкенов. Кинетика же этих процессов изучалась мало, за ксключением кинетики газофазного гидрохлорирования хлорэтена [107]. Катализатором процесса служил хлорид цинка, нанесенный на цеолит температура варьировалась от 73 до 148 °С. Установлено, что для периодов постоянной активности катализатора порядок реакции равен 2, лимитирующая стадия процесса — поверхностная реакция между двумя адсорбированными молекулами. Единственным конечным продуктом реакции был обнаружен 1,1-дихлорэтан, поэтому сделан вывод о невозможности радикального механизма процесса. Авторы предполагают, что в данном случае имеет место четырехцентровый механизм процесса в переходном состоянии образуется комплекс хлорида водорода с хлорэтеном, в котором одновременно с образованием новых связей разрываются старые. В этом случае должна быть высокая степень ориентации одной молекулы относительно другой. [c.88]

    Первый порядок этой реакции, по-видимому, свидетельствует о том, что лимитирующей стадией процесса является не квадратичная рекомбинация адсорбированных атомов, а их миграция по поверхности к центрам рекомбинации. Очевидно, что энергия активации этого процесса должна быть близка к прочности связи адсорбированных атомов с поверхностью катализатора. Полученное значение для энергии активации рекомбинации адсорбированных атомов водорода —2 ккал1моль подтверждает величину прочности одноэлектронной связи, в несколько килокалорий на моль, оцененную из спектров ЭПР. Энергия активации процесса рекомбинации алкильных радикалов также пе превышает нескольких килокалорий на моль. [c.408]

    И поверхностного натяжения). В этом растворителе процесс лимитируется активацией водорода. Благодаря его ограниченной адсорбции ббльшая часть поверхности катализатора занята НБ. В концентрированных растворах НБ (50— 10%) реакция имеет нулевой порядок по восстанавливаемому мнтросоединению. Дальнейшее уменьшение концентрации НБ (ниже 10%) незначительно снижает скорость реакции и, по-видимому, не изменяет лимитирующую стадию процесса. Наоборот, в растворах толуола и этанола физико-химические свойства этих растворителей обеспечивают достаточно высокую скорость активации водорода, что обусловливает повышение скорости процесса по сравнению с восстановлением НБ в анилине. [c.17]

    Растворение металла, идущее одновременно с образованием Нг из ионов Н в растворе, представляет собой случай, в котором анодный и катодный процессы протекают на одном и том же электроде. (Эти процессы называются полиэлектродными.) При этом как диффузия, так и химические процессы могут стать лимитирующими. Ранние работы по растворению амальгам натрия [7-6] в кислотах и основаниях указывают на то, что скорость реакции имеет первый порядок по Н" и приблизительно порядок /2 по концентрации натрия. Для кислых растворов эти факты объяснялись тем, что процесс лимитируется диффузией. Однако, как показали более поздние исследования [77—80], скорость растворения металлов в различных кислотах и растворителях пропорциональна концентрации недиссоциированной формы кислоты и относительные константы скорости в различных кислотах хорошо ложатся на прямую Бренстеда. По-видимому, в этом случае лимитирующей стадией является перенос протона от молекулы недиссоциированной кислоты к поверхности металла , причем реакция подвергается специфическому катализу кислотами. При растворении солей, таких, как Na l, в системах с перемешивающим устройством предполагается, что скорость реакции лимитируется диффузией, причем диффузия происходит через пограничный слой насыщенного раствора соли на поверхности кристаллов соли. Хотя подобная картина, по-видимому, является правильной для простых солей, таких, как галогеииды щелочных металлов, в случае солей металлов переменной валентности картина может быть другой. Так, например, безводный СгС1з очень медленно растворяется в воде, при этом скорость реакции не зависит от перемешивания. Было обнаружено, что небольшое количество Сг " в растворе оказывает огромное влияние на скорость реакции. Вероятно, в этом случае осуществляется перенос заряда между частицами Сг - в растворе и Сг в твердой фазе. Эти системы, по-видимому, заслуживают дальнейшего изучения. [c.557]

    Результаты рассмотр ных выше кинетических измерений несколько противоречивы. Однако большинство исследователей приходит к выводу, что при стехиометрическом соотношении фенола и ацетона реакция имеет первый порядок по фенолу и ацетону и что лимитирующей стадией является конденсация одной молекулы фенола и одной молекулы ацетона с образованием промежуточного карбинола. Прямопропорцинальная зависимость скорости от концентрации кислоты (или протонов) может свидетельствовать о том, что конденсация начинается с присоединения протона. Последующие стадии, вероятно, не лимитируют процесс. Это указывает на то, что они являются быстрыми ионными реакциями или что их промежуточные продукты более реакционноспособны, чем исходные веществу. [c.88]

    Каталитическая реакция метана с водяным паром изучена многими исследователями, особенно русскими Бодровым, Аппельбаумом и Темкиным [57]. Эйкерс и Кэмп [581, используя никелевый катализатор на кизельгуре, изучили в интегральном реакторе при температуре 638 С и давлении 1 ат влияние концентрации на скорость этой реакции. Они нашли, что реакция имеет первый порядок по метану, что как СО, так и Oj являются первичными продуктами, а реакция конверсии СО либо совсем отсутствует, либо протекает очень медленно. Они предположили, что хемосорбция СН4 или расщепление СН4 на радикалы Hj и является стадией, лимитирующей скорость процесса, и определили, что энергия активации этой стадии равна 9 ккал1моль. [c.110]

    Использование вращающегося дискового электрода для изучения электрсхимическоЯ кинетики. Сопоставляя экспериментальные данные по кинетическим закономерностям электрохимических реакций с зависимостью и i,J от различных параметров (см. уравнения (4.61) и (4.62)1, можно установить природу лимитирующей стадии реакции. Действительно, если наиболее медленной стадией процесса является диффузия, то зависимость тока, измеренного на вращающемся дисковом электроде, от Уш должна быть прямолинейной и проходить через начало координат. Если скорость процесса определяется медленностью стадии разряда—ионизации, то ток не зависит от скорости вращения. В условиях смешанной кинетики наблюдается нелинейная зависимость тока от потенциала (рис. 4.22). В таких системах можно определить порядок реакции р. Действительно, измеряемый ток I = кс , а ток, определяемый стадией переноса электрона, = кс . В условиях станционарной диффузии с, = с,,(1 — / ,1) и тогда [c.247]

    Порядок реакции имеет несколько разный смысл для простых и сложных реакций. Порядок простой реакции равен числу частиц, участвующих в элементарном акте, он всегда положителен и целочислен (п 1, 2, 3). Если сложная реакция представляет собой ряд последовательных стадий, из которых только одна лимитирует весь процесс (см. гл. П1), то порядок суммарной реакции обычно равен порядку этой лимитирующей стадии. В общем случае порядок сложной реакции может быть любым целочисленным, дробным, переменным и даже отрицательным (для автокаталитических и цепных автоинициированных процессов). Например, для цепной реакции распада, протекающей по схеме  [c.16]

    В эксиериментах, н кото )ых удавалось лимитир ющей стадией сделать сам процесс сгорания углерода (стадия в), было установлено, что до 1300°С реакция протекает по первому порядку с энергией активации —100 кДж/моль при более высоких температурах порядок реакции понижается до нуля и эне()-гия активации возрастает до 250 кДж/моль. [c.231]

    N205 многостадийна и ее лимитирующая стадия имеет первый порядок. К реакциям второго порядка относятся, например, процессы [c.117]

    Скорость реакции при использовании большинства реагентов пропорциональна концентрации NO2+, а не каких-либо других частиц [115]. Если этот ион образуется из реагента в небольших количествах, атака происходит медленно и нитровать тогда можно только активные субстраты. В концентрированных и водных минеральных кислотах реакция имеет второй порядок первый по ароматическому субстрату и первый по азотной кислоте (кроме случаев, когда используется чистая азотная кислота в таком случае это реакция псевдопервого порядка). Однако в органических растворителях, таких, как нитрометан, уксусная кислота и I4, реакция имеет первый порядок по азотной кислоте и нулевой порядок по ароматическому субстрату, поскольку в этих условиях лимитирующей стадией является образование NO2+, а субстрат в этом процессе участия не принимает. [c.336]

    В процессе превращения субстрата в молекулу 6 лимитирующей стадией может быть либо отрыв протона, либо последующая потеря галогенид-иона. Необычная последовательность реакционной способности уходящих групп (Вг>1>С1) объясняется тем, что меняется стадия, определяющая скорость. Когда уходящей группой является Вг или I, лимитирующей стадией будет отрыв протона, и порядок скорости для этой стадии соответствует последовательности Р>С1>Вг>1. Когда же уходящей группой является С1 или Р, лимитирующим становится расщепление связи С—X, и порядок скорости для этой стадии соответствует последовательности 1>Вг>С1>Р. Подтверждение последнему факту было найдено при изучении конкурентных реакций. жега-Дигалогенобензолы с двумя различными атомами галогена обрабатывали ЫНг [29]. В таких соединениях наиболее кислый водород расположен между двумя атомами галогенов когда он отрывается, остающийся анион может терять любой атом галогена. Поэтому, изучая, какой из атомов галогена отщепляется предпочтительно, можно получить [c.11]

    Исследования кинетики различных взаимодействий показывают, что чаще других встречаются реакции первого, второго и иногда третьего порядков. Так, например, к реакциям первого порядка относится термическая диссоциация газообразного иода 12 — 21 (v=k , ) и разложение пентаоксида азота 2N2O5 — —4NO2-I-O2 (v = k n o,)- (Можно предположить, что реакция разложения N2O5 многостадийна и ее лимитирующая стадия, имеет первый порядок.) К реакциям второго порядка относятся, например, процессы [c.111]


Смотреть страницы где упоминается термин Порядок реакций и лимитирующая стадия процесс: [c.181]    [c.223]    [c.48]    [c.169]    [c.139]    [c.27]    [c.754]    [c.121]    [c.341]   
Методы кибернетики в химии и химической технологии 1968 (1968) -- [ c.278 ]




ПОИСК





Смотрите так же термины и статьи:

Лимитирующая

Лимитирующая стадия

Лимитирующая стадия реакции

Порядок процесса

Порядок реакции

Реакции лимитирующие

Реакции порядок Порядок реакции



© 2025 chem21.info Реклама на сайте