Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тугоплавкость графита

    Тугоплавкость. Графит относится к числу наиболее тугоплавких материалов. Известны только два материала карбид тантала и гафния, температура плавления которых незначительно превышает температуру сублимации графита, равную 3600° С. [c.320]

    НК-50 (СТ-самолетная тугоплавкая) представляет собой продукт загущения масла МК-22 натриевым мылом. В нее добавляется коллоидный графит для повышения противоизносных и противозадирных свойств. Смазку применяют в узлах трения, где возможны большие удельные нагрузки и повышенная температура для подшипников колес шасси самолетов и вертолетов, шлицевых соединений вту- [c.200]


    Восстановление окислов при высоких температурах (900— 1200°С) производится водородом, генераторным газом, углеродом (сажа, графит), гидридами. Этот способ применяется для получения чистых порошков никеля, кобальта, титана, вольфрама, молибдена и др. Порошки состоят из частиц осколочной формы и в порошковой металлургии используются для изготовления изделий из тугоплавких и твердых металлов и сплавов. Наиболее широко этот способ применяется для получения железного порошка из окалины, используемого для изготовления подшипников, фрикционных материалов и различных компактных деталей. [c.321]

    Как известно, кристаллизация из расплава используется для очистки многих веществ, в том числе и таких тугоплавких, как кремний, германий, различных металлов и солей. Однако высокая температура процесса увеличивает вероятность взаимодействия очищаемого вещества с материалом разделительной аппаратуры, что приводит к загрязнению этого вещества. Например, в процессах зонной очистки и выращивании монокристаллов германия он долго находится в расплавленном состоянии при температуре 1000°С в контакте с контейнером (лодочкой). Хотя контейнер обычно изготавливают из графита высокой чистоты, тем не менее оказывается, что в ходе процесса имеет место переход некоторых примесей, содержащихся в графите, в германий. Следовательно, задача подбора подходящих конструкционных материалов в подобных случаях приобретает важное значение. С целью выработки рекомендаций по повышению их качества или замены представляет интерес оценка загрязняющего действия этих материалов. Рассмотрим кратко некоторые оценки загрязнения очищаемого вещества примесью, одноименной с отделяемой. [c.144]

    Из графита изготовляют различные детали машин подшипники, поршневые кольца и др. В связи с термической и химической устойчивостью графит применяют как материал для аппаратов химических и металлургических производств — теплообменников, тиглей для тугоплавких сплавов, а также для рулей реактивных двигателей. В ядерной технике (например, в производстве плутония из урана) графит используют как замедлитель нейтронов. [c.199]

    Г р а ф и т — темно-серое кристаллическое вещество с металлическим блеском. В отличие от алмаза он очень мягок, хорошо проводит электрический ток и теплоту. Графиту свойственны тугоплавкость, жаростойкость, химическая инертность. Из него изготовляют электроды различных приборов. Графит замедляет движение нейтронов и поэтому используется в атомных реакторах для управления цепной реакцией атомного распада. Из смеси графита с глиной состоят огнеупорные тигли в металлургии. Из графита изготовляют смазочные материалы и карандаши. В природе встречаются крупные залежи графита. Искусственный графит получают, пропуская электрический ток через смесь кокса с песком и смолами в специальных печах при температуре около 3000 С и без доступа воздуха. [c.319]


    Проводники электрического тока делятся на проводники первого и второго рода. К проводникам первого рода относятся металлы и их сплавы, графит, некоторые тугоплавкий окислы и другие материалы проводниками второго рода называют растворы кислот, щелочей и солей, расплавленные соли и кристаллы некоторых твердых солей (например, хлорида натрия и хлорида калия). [c.42]

    Многообразие свойств графита делает его пригодным в различных областях промышленности. Так, благодаря химической инертности и электрической проводимости графит является хорошим электродом. Способность графита к стиранию (отделению от него тонких чешуек) используют в производстве карандашей и смазочных материалов. Вследствие тугоплавкости графита (он почти не испаряется даже при температуре белого каления) его в смеси с глиной применяют для изготовления огнеупорных тиглей, необходимых при плавлении металлов. [c.345]

    Слоистая структура графита обусловливает легкое расслаивание его на отдельные чешуйки (слабые силы Ван-дер-Ваальса между плоскостями), что определяет его смазочные свойства и применение в карандашах. Не-локализованные я-связи обусловливают большую электрическую проводимость графита вдоль плоскостей и черный цвет. Благодаря малой химической активности, тугоплавкости и хорошей проводимости графит широко используют в качестве анодов в электролизных ваннах, в частности при получении алюминия. Из него готовят огнеупорные тигли. В графитовых лодочках осуществляют [c.360]

    Эрозий электродов в широкой степени зависит от теплофизических свойств материалов — от его теплопроводности и температуры плавления. Нагрев поверхности более теплопроводного материала при той же энергии импульса меньше, так как теплота быстрее уходит в глубь материала. Поэтому электроды-инструменты выполняются обычно из латуни, меди, алюминия их эрозия оказывается намного меньшей, чем эрозия сталей или твердых сплавов. С другой стороны, выброс материала при прочих равных условиях тем меньше, чем выше температура плавления материала. Поэтому иногда применяют для изготовления электрода-инструмента тугоплавкие материалы, например графит, вольфрам, композиции меди и вольфрама. Эти материалы, однако, очень дороги и хуже обрабатываются, тогда как медные и латунные электроды дешевы и могут быть выполнены любой формы. [c.359]

    Получаемый при термическом разложении органических соединений черный графит, или уголь, представляет собой тонкоизмельченный графит. Технически наиболее важными сортами черного графита являются кокс, древесный уголь, животный уголь и сажа. Все разновидности углерода тугоплавки. [c.426]

    При подведении итогов самостоятельной работы, которую проверяет учитель, на следующем уроке обсуждают, какие ответы иа вопросы нужно было дать. Подчеркивают, что значительно легче найти отличия в свойствах алмаза и графита, чем их сходство. Во втором случае можно было отметить, что алмаз и графит — прп обычных условиях твердые кристаллические вещества, тугоплавкие, нелетучие, имеющие небольшую плотность. Алмаз и графит, являясь аллотропными видоизменениями одного и того же элемента, проявляют сходные химические свойства. [c.133]

    Белый, графитоподобный (а-модификация — белый графит) или алмазоподобный ( 9-модификация — боразон). Тугоплавкий, термически устойчивый, очень твердый ( 9-модификация). Малореакционноспособный (особенно 9-модификация) не реагирует с жидкой водой, кислотами. Разлагается щелочами в растворе. Реагирует с концентрированной фтороводородной кислотой, галогенами. Получение см. 141 1, 144 , 150 . [c.79]

    Молибденит. Серо-голубой кристаллический или черный порошок очень мягкий, жирный на ощупь (как графит), летучий при нагревании, тугоплавкий. Не растворяется в воде. Не реагирует с разбавленными кислотами, щелочами, гидратом аммиака. Реагирует с концентрированными кислотами-окислителями, царской водкой , кислородом, водородом. Получение см. 772 , 773 . [c.391]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]


    Как было показано в гл. 16, растворение и рост алмаза в растворе-расплаве металлов в изучавшихся условиях лимитируются процессом переноса углерода, который может осуществляться путем термо- или концентрационной диффузии. С целью изменения механизма, лимитирующего скорость роста кристаллов алмаза, в качестве источника углерода использовались графит, содержащий цирконий (массовая доля 25 %), а также прессованная смесь порошков синтетического алмаза и никеля (в соотношении 3 2) с размером частиц (1—4)-10 м. В последнем случае графитовый нагреватель камеры с горизонтально расположенным реакционным объемом изолировался танталовой трубкой с толщиной стенки 3-10 м. Предполагалось, что указанные композиционные углесодержащие материалы за счет меньшей площади контакта с углеродом, присутствия тугоплавкого металла-наполнителя и т. д. обеспечат снижение интенсив-388 [c.388]

    Н. циркония, ZrN. Жёлтые, зелёные или коричневые тугоплавкие кристаллы применяется как компонент керамики, защитное и декоративное покрытие на металлах и графите. [c.277]

    Печи сопротивления. Нагрев металла сопротивлением осуществляется прохождением электрического тока через металл. Печи сопротивления обычно применяются для тугоплавких металлов. Электрооборудование этих печей дешевле, чем индукционных. Греющий элемент должен иметь возможно большее удельное сопротивление. Греющими элементами могут служить уголь, графит, криптол (зернистый уголь), карборунд, тугоплавкие металлы. В таких печах можно [c.341]

    В авиации наряду со смааками общего назначения применяются специализированные смааки НК-50 (самолетомоторная тугоплавкая СТ), приготовляемая на натриевых мылах и содержащая графит, повышающий ее смазывающие свойства, особенно при высоких температурах смазка № 9 для смазывания механизмов, подвергающихся резким иаменениям температуры и влажности во время полета в различных метеорологических условиях и на разных высотах она применяется также для консервации изделий из стали с металлическими и химическими покрытиями на короткие сроки. [c.700]

    Получаемый при термическом разложении органических соединений черный графит, или уголь, представляет собой тонкоизмельченный графит. Технически наиболее важными сортами черного графита являются кокс, древесный уголь, животный уголь и сажа. Плотность черного графита колеблется в пределах 1,8—2, г1см . Все разновидности углерода тугоплавки. [c.449]

    Безводный СгС1з (см. препарат 114) нагревают в фарфоровой лодочке, помещенной в трубку из тугоплавкого атекла или, лучше, в кварцевую, до температуры красного каления. Через трубку пропускают поток сероводорода, высушенного в осушительной колонке с СаСЬ. Через 2 ч дают трубке охладиться в потоке HjS и получают СггЗз в виде черных, похожих на графит, блестящих кристаллов. [c.602]

    Веществ, обладающих атомными решетками, сравнительно мапо. К ним принадлежат алмаз, кремний и некоторые неорганические соединения. Эти вещества характеризуются высокой твердостью (алмаз — самое твердое естественное вещество), они тугоплавки и нерастворимы практически ни в каких растворителях. Такие их свойства обусловлены прочностью ковалентной связи. Если атомы в кристаллической решетке связаны только <т-связями, то вещество не проводит электрического тока и является изолятором (кварц). Если в атомной кристаллической решетке присутствуют делокализованные тг-связи, то вещество может иметь хорошую электропроводность (графит). Попытка сдвига одних участков кристаллической решетки относительно других приводит при достаточном усилии к ее разрушению, что связано с разрывом кова.пентных связей, обладающих направленностью. Количество ближайших частиц в кристаллической решетке, окружающих выбранную, назывгьется координационным числом. Координацрюн-ное число в атомных решетках определяется числом <т-связей центрального с окружающими его атомами и, в силу насыщаемости ковалентной связи, не достигает больших значений. Часто оно равно четырем. [c.160]

    Графит используется для изготовления карандащай, тугоплавких тиглей, электродов, смазочных материалов, в качестве замедлителя в ядерных реакторах смесь его с маслом является прекрасным смазочным материалом. [c.241]

    Графит имеет малую плотность (р-2,22 г/см ), электропроводен, обладает высокой теплопроводностью, в этом отношении он похож иа металлы. Это самое тугоплавкое из простых веществ, т. пл. 4492 С (под авленнем 10 МПа при атмосферном давлении углерод возгоняется при 3700 С, не плавясь).  [c.364]

    Графит — устойчивая при нормальных условиях аллотропная форма углерода. Он имеет серо-черный цвет и металлический блеск, кажется жирным на ощупь, очень мягок, оставляет черные следы на бумаге. Графит хорошо проводит теплоту и электрический ток, но его свойства резко анизотропны. Кристаллохимическое строение графита существенно отличается от структуры алмаза. Он имеет гексагональную структуру (рис. 144). Атомы углерода в графите расположены отдельными слоями, образованными из плоских шестиугольников. Каждый атом углерода на плоскости окружен тремя соседями ( р -гибридизация), расположенными вокруг него в виде правильного треугольника на расстоянии 0,412 нм. А расстояние между ближайшими атомами соседних слоев равно 0,340 нм и более чем в два раза превышает кратчайшее расстояние м ду атомами углерода в плоском слое. Поэтому графит имеет меньшую плотность по сравнению с алмазом, легко расщепляется на тонкие чешуйки. Химическая связь между атомами углерода внутри слоя имеет ковалентный характер с ярко выраженной склонностью к металлизации. Последняя обусловлена возникновением делокализованных 5Гр.р-связей в пределах шестиугольников (как в молекуле бензола) и всего макрослоя. Этим и объясняются хорошая электрическая проводимость и металлический блеск графита. Углеродные атомы различных слоев связаны слабыми силами Ван-дер-Ваальса. Преимущественно ковалентная связь между атомами углерода внутри слоя сближает графит с алмазом и тот и другой необычайно тугоплавки и обладают малой упругостью паров при нагревании. [c.359]

    Полученные величины критерия П для графита существенно выше, чем этот показатель у тугоплавких соединений [62], кВт/м графит 20-100 ггСо,9 5 2,3 ЫЬСо,9з 1,9 ВеО 1,15 ТгО- 0,27. [c.113]

    Объемно - Поверхности ыевзаимодействиг . Как правило, жидкие металлы плохо смачивают графит при температурах начала плавления, образуя на его поверхности каплю с краевым углом смачивания более 90°. Однако выше температуры,- при которой начинается активное химическое взаимодействие графита с расплавом с обра- < зованием карбида, обнаруживается резкое улучшение смачиваемости обычно с переходом к быстрому растеканию металла по поверхности. Это явление впервые было подробно рассмотрено при растекании тугоплавких металлов (Ti, Zr, Si и др.) по поверхности графита. Аналогичные исследования проведены Найдичем Ю.В. и Колесниченко Г.А., которые анализируют улучшение смачиваемости графита металлом и переход к растеканию при химическом взаимодействии на основе развитых A.A. Жуховицким и В.А. Григорьяном представлений о неравновесном (динамическом) поверхностном натяжении на межфазной границе, разделяющей химически взаимодействующие фазы. В результате химического взаимодействия на поверхности графита происходит резкое снижение (вплоть до отрицательной величины) свободной энергии на границе графит - жидкий металл, что приводит к сильному уменьшению краевого угла смачивания и растеканию расплава по поверхности с большой скоростью. [c.133]

    Сульфиды рзэ проявляют значительное разнообразие кристаллических ( рм, которые, однако, не сильно различаются по физикохимическим и химическим свойствам. Особый интерес, проявляемый к этим соединениям, вызван чрезвычайно высокой термической устойчивостью сульфидов как самих по себе, так и в присутствии других материалов. Это дает возможность заменить графит при плавлении тугоплавких металлов там, где есть опасность образования карбидов. Однако у огнеупоров из сульфидов рзэ есть крупный недостаток, заключающийся в окислении кислородом при достаточно высоких температурах, что вполне понятно, если сравнить сродство рзэ к кислороду и сере (например, теплоты образования La Og и LaaSg равны соответственно 428 и 301 ккал1моль). [c.34]

    Комбинированные материалы изготовляются на основе тугоплавких металлов и полимерных связующих [623, с. 26]. С этой целью пиролитический графит, например, осаждали в виде тонких пленок па жидкие металлические подложки дЖ получения непрерывных волокон высокой прочности [624, с. 97908]. Разрушающее напряжение таких волокон составляло 840 МПа. Фирма Union arbide в промышленном масштабе производит углеродные волокна с модулем упругости ЫО —1,55-10 МПа. Такое волокно характеризуется значением разрушающего напряжения примерно 12,6-10 —14-10 МПа. В некоторых случаях о,, возрастает [625, с. 33] до 17,5-10 МПа. [c.299]

    Смазка самолетомоторная тугоплавкая СТ (смазка НК-50), ГОСТ 5573—67,— натриевая, в качестве основы взято масло МК-22. В смазке содержится коллоидный графит. Она предназначена для смазывания в моторах клапанов и коромысел, работающих при температурах до 180° С, тяжелонагруженных резьбовых и шлицевых соединений и аналогичных им узлов. [c.269]

    ПОРИСТЫЕ МАТЕРИАЛЫ — материалы, общей характерной чертой к-рых является пористость. В зависимости от назначения материала пористость изменяется в широких пределах. Различают П. м. низко-. Средне- и высокопористые. н и з -к о п о р и с т ы м относятся материалы, пористость которых пе превышает 30%. Из них изготовляют пористые подщипники, в частности подшипники скольжения, преим. в виде различных втулок пз материалов на основе гкелеза, меди, алюминия и некоторых тугоплавких соединений. В качестве твердых смазок в них используют графит, сульфиды и др. кохмпоненты поры заполняют маслом. Пористость таких подшипников 10— 30%. Их применяют в узлах трения машин и приборов. Подшипники отличаются высокой износостойкостью и низким коэфф. трения, иногда их используют без дополнительной смазки. Низкопористые материалы служат также для создания пористых эмиттеров различных изделий, изготовляемых в основном из еольфра.мо-вого порошка со сферической формой частиц либо из сплава вольфрама с рением. Пористость эмиттеров 8— 15%. Их применяют в качестве электродов ионных двигателей. К с р е д н е п о р и с т ы м относятся [c.236]

    Смазка самолетомоторная тугоплавкая СТ (смазка НК-50), ГОСТ 5573 —67,— натриевая, на масле МК-22. В смазке содержится, коллоидный графит. Применяется для смазывания в некоторых моторах клапанов и коромысел, кратковременно работающих [c.307]

    Графитизированный углерод, применяемый в большинстве случаев в виде электрографита , по некоторым свойствам (особенно по легкой окисляемости) можно отнести к группе очень тугоплавких металлов. В противоположность перечисленным выше металлам графит очень дешевый материал. К недостаткам графита относятся незначительная механическая прочность и сложность его обработки. По теплопроводности графит превосходит большинство металлов. Однако электропроводность его значительно меньше, ее максимум лежит при 400—600°. Нитрид бора в отличие от графита является превосходным изолятором при высоких температурах только недавно стали получать его в виде компактных кусков любой формы. [c.10]


Смотреть страницы где упоминается термин Тугоплавкость графита: [c.479]    [c.184]    [c.324]    [c.650]    [c.74]    [c.650]    [c.35]    [c.576]    [c.528]    [c.786]    [c.792]   
Тугоплавкие материалы в машиностроении Справочник (1967) -- [ c.320 ]




ПОИСК





Смотрите так же термины и статьи:

Графит

Графит графита

Графой

Графы



© 2024 chem21.info Реклама на сайте