Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мягкие кислоты, основания, субстраты

    Принцип ЖМКО является очень общим, но пока лишь качественным законом, так как до сих пор не существует надежного и универсального способа количественной оценки значений жесткости и мягкости кислот и оснований. Он позволяет однозначно объяснить рассматривавшееся выше несоответствие между основностью и нуклеофильностью. Оно связано с тем, что основность характеризует сродство основания к протону, являющемуся жесткой кислотой, а нуклеофильность — сродство реагента к электрофильному центру ароматического субстрата, являющегося из-за сильной делокализации электронов мягкой кислотой. Следовательно при прочих равных условиях большей основностью должны обладать более жесткие основания, а большей нуклеофильностью — мягкие основания. Жесткий фторид-ион — более сильное основание и более слабый нуклеофил, чем мягкий и менее основный иодид-ион. Жесткий и сильно основный этилат-ион — более слабый нуклеофил, чем значительно менее основный, но мягкий этилмеркаптид-анион и т. д. [c.159]


    При изучении реакций бимолекулярного нуклеофильного замещения наибольшее внимание уделялось выяснению факторов, определяющих нуклеофильную реакционную способность атакующего агента [17]. Наряду с использованием полуколичественных закономерностей уравнения Эдвардса [18], Свена—Скотта [191 очень полезным оказывается применение хорошо известного принципа жестких и мягких кислот и оснований (ЖМКО) [20]. В связи с этим важно подчеркнуть, что при сравнении мягких и жестких агентов относительный порядок нуклеофилов зависит от степени образования связи нуклеофил — субстрат в переходном состоянии замещения. Согласно Хадсону [17], отношение констант скорости км/к изменяется немонотонно и проходит через максимум (рис. 1). [c.45]

    Здесь уместно остановиться на вопросе об основности и кислотности и на концепции жестких и мягких кислот и оснований (ЖМКО). Понятия кислоты и основания определялись с течением времени все более широко. Оствальд и Аррениус (1890 г.) рассматривали кислоты как источник протонов, а основания как источник гидроксид-аниона. Бренстед и Лоури (1923 г.) предложили считать кислотами субстраты - источники протонов, а основаниями-субстраты, которые их связывают. Это определение, уже более широкое, позволило распространить понятие основание на аммиак и амины. Такое определение основания давалось и в предыдущих разделах курса." Следует отметить, что в таком смысле основаниями являются также способные протонировать-ся алкены, а сопряженными им кислотами (см. разд. 1.4.3)-соответствующие карбокатионы, стабилизирующиеся с отщеплением протона и переходом в алкены (см. разд. 2.2). [c.172]

    Из него вытекает, что наблюдаемая скорость реакции зависит от скорости отрыва сульфит-аниона кг лишь в случае, если она значительно меньше, чем скорость отрыва от ст-комплекса гидроксильного иона. С позиции принципа ЖМКО такое отношение скоростей объясняется тем, что жесткое основание — гидроксильный ион должен легче отрываться от мягкой кислоты, которой является ароматический субстрат, чем мягкое основание — сульфит-анион. [c.171]

    Поскольку при донорно-акцепторном взаимодействии с растворенным веществом растворитель выступает либо как кислота, либо как основание, для классификации растворителей может быть привлечен принцип ЖМКО (см. 2.5). В применении к растворам принцип ЖМКО означает, что жесткие растворители сольватируют преимущественно жесткие субстраты, а мягкие растворители — мягкие субстраты, и представляет собой современную формулировку старого правила подобное растворяется в подобном . [c.56]


    Однако вряд ли сольватация — единственная причина закономерного изменения свойств нуклеофилов, так как даже для незаряженных нуклеофилов нуклеофнльность возрастает при переходе сверху вниз в группе периодической таблицы. Такие нуклеофилы не столь сильно сольватированы, а изменение природы растворителя не оказывает на их нуклеофильность такого большого влияния (265]. Для объяснения можно использовать принцип жестких и мягких кислот и оснований (т. 1, разд. 8.4) [266]. Протон представляет собой жесткую кислоту, а алкильный субстрат (который можно рассматривать как кислоту Льюиса по отнощению к нуклеофилу, рассматриваемому как основание) намного мягче. Тогда в соответствии с принципом ЖМКО, приведенным в т. 1, разд. 8,4, следует ожидать, что алкильная группа по сравнению с протоном будет взаимодействовать предпочтительно с более мягкими нуклеофилами. Поэтому больщие по размеру, легче поляризуемые (более мягкие) нуклеофилы с большей силой (относительной) притягиваются к алкильному атому углерода, чем к протону. Это можно объяснить и по-другому чем выше поляризуемость нуклеофила, тем легче деформируется электронное облако, поэтому большие нуклеофилы в большей степени способны реально передать электронную плотность на субстрат, чем маленькие нуклеофилы, электронные облака которых более плотны. [c.77]

    Алкильные, алкенильные и арильные соединения тяжелых металлов, например, ртути, таллия, олова, являются плохими донорами карбанионов, так как катионы этнх металлов имеют (мягкие кислоты Льюиса) высокое сродство к карб анионам (мягким основаниям Льюнса) к ноэтому перенос карбаниоиа к электрофильному углеродному центру молекулы субстрата термодинамически менее выгоден, чем в случае соединений лития и магния. [c.1545]

    Амфотерный характер иона карбония в концепции ЖМКО предполагает способность на стадии роста к взаимодействию по типу мягкая кислота - мягкое основание и жесткая кислота - жесткое основание. Предельные случаи - реакции свободных катионов в газовой форме, где сольватация может осуществляться только субстратом и рост цепи по эфирной связи, например М-ОСЮ3. Для относительно устойчивого иона карбония из изобутилена эффективный рост цепи обеспечивается предпочтительностью реакции с мягким основанием - мономером по сравнению с более жесткими основаниями (противоион и другие). Важно, что условия конкуренции меняются по ходу полимеризации вследствие расхода мономера, изменения состояния катализатора и других процессов. Неблагоприятная вначале реакция карбкатиона, например с противоионом или его фрагментом, может стать выгодной к концу процесса. Видимо, по этой причине происходит дезактивация АЦ, вследствие чего полимеризация изобутилена во многих случаях не доходит до полного исчерпания мономера. Поэтому правильнее не конкретизировать состояние ионной пары, а говорить о неопределенности этого понятия, подразумевая неоднозначную роль противоиона во время роста полимерной цепи. Следовательно, термины свободный ион карбония и, соответственно свободный противоион , применяемые в отношении роста цепи при вещественном инициировании катионной полимеризации, весьма условны. Известная низкая способность к сольватации объемных противоионов в катионной полимеризации объясняет непринципиальное влияние полярности растворителя на стадии роста цепи. Аналогично комплексование противоиона с электроноакцепторными соединениями или введение солевых добавок с одноименным (катализатору) анионом, судя по сравнительно небольшому увеличению значений молекулярной массы полиизобутилена [217], мало изменяет поведение ионной пары. Полезную информацию о роли противоионов на стадии роста дают квантово-химические расчеты взаимодействия карбкатиона с мономером [218]. Учитывая конкурентный характер реакции мономера и противоиона с АЦ, переходное состояние стадии роста можно представить по типу реакций нуклеофильного замещения 8 ,2  [c.87]

    Амфотерный характер иона карбония в концепции ЖМКО предполагает способность на стадии роста к взаимодействию по типу мягкая кислота-мягкое основание и жесткая кисло та-жесткое основание. Предельные случаи-реакции свободных катионов в газовой фазе, где сольватация может осуществляться только субстратом и рост цепи по эфирной связи, например М-ОСЮ3. Для относительно устойчивого иона карбония из изобутилена эффективный рост цепи обеспечивается предпочтительностью реакции с мягким основанием-мономером по сравнению с более жесткими основаниями (противоион и другие). Важно, что условия конкуренции меняются по ходу полимеризации вследствие расхода мономера, изменения состояния катализатора и других процессов. Неблагоприятная вначале реакция карбкатиона, например с противоионом или его фрагментом, может стать выгодной к концу процесса. Видимо по этой причине происходит и дезактивация АЦ, вследствие чего, полимеризация изобутилена во многих случаях не доходит до полного исчерпания мономера. Поэтому правильнее не конкретизировать состояние ионной пары, а говорить о неопределенности этого понятия, подразумевая неоднозначную роль противоиона во время роста полимерной цепи. Следовательно, термины свободный ион карбония и, соответственно, свободный противоион , применяемые в отношении роста цепи при вещественном инициировании катионной полимеризации, весьма условны. Известная низкая способность к сольватации объемных противоионов в катионной полимеризации объясняет не принципиальное влияние полярности растворителя на стадии [c.62]


    Широкое исследование влияния природы нуклеофилов на скорость различных реакций замещения провели Эдвардс и Пирсон [ 9а ]. Наиболее важный качественный результат их работы заключается в предложенной ими классификации кислот и оснований на "мягкие" и "жесткие". Мягкие нуклеофилы (5 , 1 и т.Д.) легко поляризуются и очень активно взаимодействуют с мягкими (легко поляризующимися) субстратами (например, HзHg ) подобным же образом жесикме нуклеофилы (например, ОН , КНд) трудно поляризуются и очень активно взаимодействуют с жесткими субстратами (нащжм , или КСООК). [c.64]

    В определении свойств жестких и мягких кислот и оснований роль растворителя гораздо важнее, чем это кажется на первый взгляд. Требует уточнения приведенное выше утверждение, что высокая НВМО принадлежит сильно электроположительному иону (Ь " ") на самом деле расчет изолированного иона показывает, что незаполненная 2 -орбиталь должна быть гораздо ниже по энергии, чем 2 -орбитали ббльших по размеру и предположительно более мягких ионов. Подобным образом ВЗМО небольших анионов (ОН , Р ) в газовой фазе расположены достаточно высоко, как и следовало ожидать, учитывая сильное отталкивание между электронами, сконцентрированными в малом объеме [34]. В результате эти ионы, взятые отдельно, имеют орбитальные характеристики, которые мы приписывали мягким системам Жесткость малым ионам придает только сольватация протонными растворителями [34]. Плотная положительная сольватная оболочка понижает ВЗМО малых анионов. Отрицательные про-тивоионы повышают энергию НВМО малых катионов. Малые ионы, кроме того, частично приобретают жесткость в начале кислотно-основной реакции при прямом взаимодействии с субстратом, кулоновское поле которого оказывает стабилизирующее влияние, подобное влиянию протонных растворителей. С другой стороны, в комплексах катиона с краун-эфирами или криптандами он имеет характер мягкой кислоты, и реакция контролируется граничными орбиталями благодаря низкой НВМО иона, который реагирует так, как будто он изолированный [35] и больший по размерам, чем на самом деле. [c.190]

    Так как по Льюису акцепторы электронов являются кислотами, а доноры электронов — основаниями, сольватацию вообще можно описать как взаимодействие льюисовских кислот и оснований и классифицировать с использованием принципа жестких и мягких кислот и оснований (принцип ЖМКО) [21,22]. По принципу ЖМКО имеются по два класса кислот и оснований, отличающихся по своей электроотрицательности и поляризуемости. Жесткие кислоты (например, Н+, Li+, Ве2+, ВРз, НгО, доноры протона) и жесткие основания (например, F , НО", R0, НгО, ROH, R2O, NH3) обладают высокой электроотрицательностью и незначительной поляризуемостью, тогда как у мягких кислот (например, Ag+, Hg+, h, Вгг, карбены, тринитро-бензол) и мягких оснований (например, Н , 1 , Вг , RS , RSH, R2S, олефины, ароматические углеводороды) незначительная электроотрицательность и большая поляризуемость. Каждый растворитель после выяснения его кислотно-основного действия также можно классифицировать как мягкий или жесткий. Простое, экспериментально многократно подтвержденное правило, что жесткие кислоты связываются преимущественно с жесткими основаниями, а мягкие кислоты — с мягкими основаниями, в применении к растворам означает, что мягкие растворители сольватируют преимущественно мягкие субстраты, а жесткие растворители—жесткие субстраты (схема 2). Это правило можно рассматривать как современную формулировку старого правила similia similibus solvuntur . [c.37]

    При замещении у атома углерода карбонильной группы порядок нуклеофильности отличается от порядка для насыщенного атома углерода — он точнее коррелирует с основностью. Это, по-видимому, обусловлено тем, что атом углерода карбонильной группы с его частичным положительным зарядом в большей степени напоминает протон, чем атом углерода в насыщенном реакционном центре. Таким образом, карбонильный углерод—намного более жесткая кислота, чем насыщенный атом углерода. Установлен следующий порядок нуклеофильности для таких субстратов [276] Ме2С = Ы0 > >Е10->Ме0->0Н->0Аг->Ыз->Р >Н20>Вг- 1-. Мягкие основания практически не действуют на карбонильный углерод. [c.79]

    Известен ряд методов восстановления группы С = 0 альдегидов и кетонов до группы СНа [427]. Два наиболее важных из них — это восстановление по Клемменсену и реакция Киж-нера — Вольфа. Реакция Клемменсена заключается в нагревании альдегида или кетона с амальгамой цинка в водной НС1 [428]. По этой реакции чаще восстанавливают кетоны, чем альдегиды. При восстановлении по Кижнеру — Вольфу [429] альдегид или кетон нагревают с гидразингидратом и основанием (обычно NaOH или КОН). Оригинальная методика практически полностью вытеснена модификацией Хуанг-Минлона [430] реакции Кижнера — Вольфа, согласно которой взаимодействие проводят в кипящем диэтиленгликоле. Реакцию можно вести и в более мягких условиях (при комнатной температуре) в диметилсульфоксиде при использовании в качестве основания грет-бутилата калия [431]. Реакция Кижнера — Вольфа применима также к семикарбазонам альдегидов и кетонов. Восстановление по Клемменсену на практике легче, но оно оказывается непригодным для высокомолекулярных и чувствительных к действию кислот субстратов. В этих случаях весьма полезна методика Кижнера — Вольфа. Для высокомолекулярных субстратов успешно применяется модифицированная методика Клемменсена, в которой используются активированный цинк и газообразный НС1 в таком органическом растворителе, как эфир или уксусный ангидрид [432]. Реакции Клемменсена и Кижнера — Вольфа комплементарны, поскольку в первой используется кислая среда, а во второй — щелочная. [c.313]

    Алкилгалогениды могут быть превращены в сложные 4фиры путем реакции с монооксидом углерода и спиртом в присутствии основания при использовании ЫаСо(СО)4 в качестве катализатора [42]. Как и в соответствующем синтезе карбоновых кислот, применение реакционноспособных субстратов, таких как алкил-иодиды и бензилгалогениды, которые чувствительны к нуклеофильному замещению анионом [Со( 0)4]". требует очень мягких условий (25°С, давление СО 1 атм) при этом происходит замещение атома галогена на алкоксикарбонильную группу. Однако в случае менее реакционноспособных галогенидов необходимо использование более высоких температур в этом слут чае возможна изомеризация алкилкобальтового интермедиата, что может привести к образованию смеси продуктов [схема (6.53)]. [c.208]


Смотреть страницы где упоминается термин Мягкие кислоты, основания, субстраты: [c.105]    [c.247]    [c.432]    [c.176]    [c.46]   
Механизмы биоорганических реакций (1970) -- [ c.56 ]




ПОИСК





Смотрите так же термины и статьи:

Мягкие кислоты

Мягкие кислоты основания

Мягкие субстраты

Основания и кислоты

Субстрат



© 2024 chem21.info Реклама на сайте