Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окйсь углерода определение

    Применяемые и вырабатываемые в процессе производства сероуглерод, сероводород и окись углерода характеризуются взрывоопасными и токсическими свойствами. Сероуглерод ядовит и легко воспламеняется. Температура самовоспламенения паров сероуглерода равна 126°С, температура вспыщки 30 °С. В производственных условиях пары сероуглерода могут загораться в воздухе уже при температуре примерно 100 °С. В смеси с воздухом пары сероуглерода взрываются в пределах 1,25—50% (об.) или при содержании 26—1610 г/м . Самовоспламенение смесей сероуглерода в определенных условиях возможно при температуре до 80 °С. Газовоздущные смеси сероводорода с воздухом имеют пожаро- и взрывоопасные свойства. Границы воспламенения сероводорода составляют 4,3—45,5% (об.), поэтому сероуглерод чрезвычайно огне- и взрывоопасен. Особенно взрывоопасно загорание его в закрытых емкостях и аппаратах. Сероуглерод является сильным ядом. Вредность его особенно возрастает в сочетании [c.91]


    В Голландии этот метод определения кислорода является стандартным. Окись углерода превращают в углекислый газ при прохождении через окись ртути, СОа затем анализируют при пропускании через раствор титрованного барита. [c.51]

    Химические реакции, осуществляемые в процессе создания контролируемых атмосфер из СНГ в смеси с воздухом, весьма разнообразны. Они обязательно сводятся к удалению кислорода. Помимо остаточного кислорода и азота защитные атмосферы в различном соотношении содержат двуокись и окись углерода, водород, пары воды и углеводороды. Дальнейшее изменение состава газовой среды требует специальных реакций. Поскольку двуокись углерода может взаимодействовать с определенными металлами и углеродом, содержащимся в стали, ее содержание в этой атмосфере необходимо снижать или полностью исключать. Для обеспечения взаимодействия между углеродом и поверхностью сплава металла (карбюризация) дополнительно может быть конвертирован пропан, а для нитрирования (азотирования) поверхности стали — введен аммиак. При термообработке стали нежелательно иметь высокую точку росы избыточной влаги, поэтому перед подачей на термообработку газы следует предварительно осушать, а окись углерода удалять во избежание поверхностного науглероживания низкоуглеродистых марок стали. [c.318]

    Окись углерода, определение в ацетилене 39 7 [c.509]

    Используя-свойство фосгена [58] разлагаться нацело при 800° на Хлор и окись углерода, определение фосгена можно осуществить следующим образом. Известное количество треххлористого бора пропустить через нагретую до 800° трубку, выделившийся хлор поглотить раствором иодистого калия, избыток иода оттитровать раствором тиосульфата натрия и вычислить общее содержание элементарного хлора, а по разности последнего со свободным хлором — содержание хлора в фосгене. Анализ технического треххлористого бора на содержание фосгена [59] показал, что расхождение между параллельными пробами не превышает 0,2%. [c.257]

    По технике проведения измерений импульсные методы аналогичны описанному выше динамическому методу определения общей поверхности катализаторов. В качестве газа-адсорбата используют преимущественно кислород и окись углерода. [c.89]

    Недостаток кислорода прп горении легко установить анализом продуктов сгорания. При малом избытке воздуха, недостаточном для полного сгорания топлива, в дымовых газах обнаруживается окись углерода или несгоревшие частички углерода топлива (черный дым). Контроль избытка воздуха осуществляется путем определения содержания углекислого газа в продуктах сгорания. Коэффициент избытка воздуха определяется сравнением содержания СОг в дымовых газах при теоретическом количестве воздуха с действительным содержанием СОг (процентное содержание СОг в дымовых газах обратно пропорционально коэффициенту избытка воздуха), предполагая, что количеством образовавшейся СО можнО пренебречь. [c.53]


    Еще несколько лет тому назад определение кислорода осуществляли лишь по разности, т. е. по содержанию влаги, углерода, водорода, серы, хлора, азота, а также по зольности. В настоящее время наиболее распространенный метод заключается в термической обработке угля в токе азота и в пропускании выделяющихся продуктов через платинированный углерод при 910 10° С, что превращает весь кислород угля в окись углерода. Образующаяся сероокись углерода ( OS) разрушается при прохождении через нагретую медь при 910° С [42]. Образующаяся же окись углерода затем окисляется в углекислый газ, и его определяют различными методами. [c.51]

    При использовании кокса в вагранках реакция газификации является вредной, потому что она расходует кокс и охлаждает вагранку, причем образующаяся окись углерода (СО) не может быть использована. Корреляция между качеством кокса и его реакционной способностью, измеренной в обычных условиях, не была найдена. Напротив, обнаруживается хорошая корреляция между качеством кокса и сопротивлением его удару, определенным по индексу М80 (часть кусков, больших 80 мм после опыта в микум-барабане). [c.193]

    Таким образом, на основании исследований различных авторов нельзя прийти к определенному выводу относительно однородности или неоднородности тех или иных поверхностей. Вполне возможно, что некоторые из исследованных поверхностей были однородны по отношению к изученному типу хемосорбции. Если энергия активации поверхностной миграции невелика, то та небольшая степень неоднородности, которую можно ожидать на поликристаллических материалах, может приводить к выравниванию состава адсорбированной смеси. Поэтому также вполне понятно, что опыты с одним адсорбатом (азотом) могут приводить к выводу об однородности поверхности, в то время как опыты с другим адсорбатом (окись углерода) как будто доказывают существование определенной степени неоднородности, как это и наблюдалось в опытах Эммета и Куммера. [c.130]

    РеО (т) 4- СО (г) = Ре (т) + СО, (г), лежащую в основе процесса получения железа из руды. При ее протекании в доменных печах окись углерода не полностью превращается в углекислый газ, и в атмосфере печи отношение концентраций обоих газов не может превзойти определенную величину, соответствующую конечному состоянию равновесия при данной температуре. При выдержке газовой смеси такого состава над РеО сколь угодно долгое время не будет происходить дальнейшего образования железа. [c.28]

    Окись углерода способна проявлять при определенных условиях как восстановительные, так и окислительные свойства, поэтому она имеет склонность к диспропорционированию  [c.89]

    Метод БЭТ не пригоден для раздельного определения площадей поверхностей катализаторов на носителях. В этом случае предпочтительнее применение методов, основанных на использовании высокотемпературной хемо-сорбции (0°С и выще) таких газов, как водород, окись углерода, кислород. Для определения количества адсорбированного вещества используются объемные адсорбционные или хроматографические методы. [c.177]

    Смесь газов содержит окись углерода, кислород и азот. Для определения количественного содержания СО в смеси 70 мл ее сожгли в избытке кислорода и полученную смесь газов пропустили через известковую воду. Выделившийся осадок отфильтровали и прокалили при 1000 0 [c.446]

    Абсорбционным методом определяют двуокись углерода или сумму кислых газов, непредельные углеводородные газы или их сумму, кислород и окись углерода. При выполнении абсорбционного метода совершенно необходимо придерживаться определенной последовательности в операциях, так как одни и те же компоненты могут поглощаться в разных растворах. [c.28]

    Перед определением водорода и предельных углеводородных газов необходимо удалить из анализируемой газовой смеси двуокись углерода, непредельные углеводородные газы, кислород и окись углерода. [c.32]

    Калибрование прибора и анализ газовых смесей. При определении малых концентраций горючих газов (водород, углеводороды и окись углерода) чаще применяют метод анализа по теплоте сгорания, чем по теплопроводности. [c.57]

    Ввиду способности вступать в химические соединения с гемоглобином крови окись углерода обладает высокой токсичностью. Предельно допустимая концентрация СО в воздухе составляет 0,0024% об., или 0,03 мг/л. Пребывание в помещении, содержащем 0,4% об. СО, в течение 5— 6 мин опасно для жизни человека. Такая высокая токсичность окиси углерода вызывает повышенные требования к эксплуатации установок, в которых осуществляется сжигание газов, содержащих СО. Контроль эа отсутствием утечек из газопроводов и газовых приборов, наличие аппаратуры для определения содержания со в воздухе производственных помещений, а также строгое соблюдение правил техники безопасности — таковы средства борьбы с отравлениями окисью углерода. [c.9]


    Вместе с тем, возможно и неполное сгорание, когда к атому углерода присоединяется не два, а только один атом кислорода и образуется окись углерода СО, называемая также угарным газом. Окись углерода в определенных условиях может в свою очередь сгорать с образованием двуокиси угле рода СО2 и выделением тепла. Естественно, что при сгорании углерода с образованием окиси углерода, обладающей еще значительным запасом тепла, выделяющимся нри ее сгорании в двуокись, используется лишь часть теплотворной способности углерода. [c.108]

    Практически полное хлорирование окислов титана происходит только в присутствии восстановителя, который связывает выделяющийся кислород. Ряд исследователей [146—150] изучали термодинамические основы реакций хлорирования двуокиси титана в присутствии твердого и газообразного восстановителей с целью определения теоретических равновесных парциальных давлений реагирующих веществ и продуктов реакции. Было установлено, что до 500—600 °С реакция хлорирования с восстановителем идет преимущественно с образованием двуокиси углерода, выше 700 °С преобладает окись углерода, а в интервале 900—1000 °С кислород двуокиси титана связывается с образованием почти исключительно окиси углерода. [c.545]

    Монометаллические карбонилы являются достаточно летучими для определения молекулярного веса по методу плотности паров при температурах, лежащих, как правило, ниже 100°. Следующие карбонилы способны возгоняться Ре2(С0)э Со2(СО)8 Киг(С0)9. Все карбонилы не растворяются в полярных растворителях и хорошо растворяются в большинстве органических растворителей. При нагревании карбонилы разлагаются на окись углерода и металл. В случае монометаллических карбонилов в качестве промежуточных продуктов разложения могут образоваться полиметаллические карбонилы. [c.224]

    При температуре выше 51° октакарбонил кобальта разлагается на карбонил [Со(СО) з]4 и окись углерода. Этот карбонил весьма умеренно растворим в бензоле и в пентане и может быть выделен из растворов в виде черных блестящих кристаллов. Молекулярный вес его, определенный криоскопически, указывает на тетра-мерную формулу [6]. [c.235]

    В карбонил-процессе всегда осуществляется химическое превращение металла из исходного состояния через промежуточный продукт — карбонил в конечное состояние, которое характеризуется вполне определенными физико-химическими свойствами. При этом химическим агентом, обусловливающим такое превращение металла, является окись углерода. Схематически этот процесс можно представить следующим образом  [c.10]

    Для контроля содержания кислорода в аппаратуре применяют газосигнализатор ГГМК-12, предназначенный для определения содержания кислорода в бинарных и многокомпонентных газовых смесях. Газоанализатор представляет собой прибор непрерывного действия, его выпускают со следующими шкалами О—1, О—2, О—5, О—10, О—21% (об.) кислорода. В составе анализируемой смеси в качестве неизмеряемых компонентов могут присутствовать азот, двуокись углерода, гелий, аргон, окись углерода и непредельные углеводороды до С включительно. Датчик газоанализатора ДК-6М выполнен во взрывонепроницаемом исполнении, его можно устанавливать во взрывоопасных помещениях всех классов. [c.108]

    Помимо упомянутых компонентов, сухие газы каталитического крекинга содернсат большое количество (до 25% объемн.) неуглеводородных соединений (азот, углекислота, окись углерода, пары воды). Их не включают в материальный баланс процесса крекинга, но учитывают при расчете соответствующих аппаратов и определении мощности газовых компрессоров. Неуглеводородные компоненты, поступая в реактор вместе с циркулирующим катализатором, присоединяются к потоку продуктов реакции. [c.16]

    Многие элементы, соединяясь друг с другом, могут образовать разные вещества, каждое из которых характеризуется определенным соотношением между массами эти элемеитои. Так, углерод образует с кислородом два соединения. Одно из них — оксид угле-рода(И) или окись углерода — содержит 42,88% (масс.) углерода и 57,12% (масс.) кислорода. Второе соединение — дяоксид и./1и двуокись углерода — содср.жит 27,29% (масс.) углерода и 72,71% (масс.) кислорода. Изучая подоб 1ые соединения, Дальтон в 1803 г. установил закон гфатных отношений  [c.23]

    Реактив для определения окиси углерода работает одинаково хо-])ошо прн всех температурах, но при указанной концентрации годится для связывания не больше О см окиси углерода. Соединение окиси углерода с пол тслористой медью очень непрочно при эва-ку1грованип, даже при встряхивании с индифферентными газами, час1ъ СО выделяется обратно. Поэтому удобнее пользоваться двумя пипетками, из которых первая служит для предварительного поглощения. вторая для окончательного. Далее надо заметить, что аммиачный раствор полухлористой меди поглощает ацетиленовые углеводороды и отчасти даже этилен, не говоря уже о кислороде. Поэтому, прежде чем определять окись углерода, необходимо элиминировать из газовой смеси эти компоненты. [c.384]

    В процессе парциального окисления метана в целях поддержания горения при недостатке кислорода часть метана в окиси углерода и водороде должна быть больше, чем в конечных продуктах горения— двуокиси углерода и воде. Следовательно, необходимы определенные температура, давление и соотношенне кислород метан, при которых можно получить повышенное значение соотношения окись углерода водород и, одновременно, максимальную степень превращения метана при минимальном отложении сажи. [c.96]

    В подобное определение включаются некоторые переходные вещества, вследствие чего граница между органической и неорганической химией несколько сглаживается. Так, например, окись углерода СО, двуокись углерода СОа, а также угольная кислота Н2СО3 и ее соли па-столько тесно связаны с неорганическим миром, что их рассматривают обычно в неорганической химии. Углеводороды же, наоборот, причисляют к органическим соединениям, и именно эти вещества лежат в основе систематики органических соединений. [c.3]

    При установлении любой структурной формулы необходимо исходить из хорошо известного свойства элементов образовывать химическую связь с вполне определенным числом атомов других элементов. Это свойство обычно выражают тем, что приписывают данному элементу одну или несколько определенных валентностей. Так, например, водород, как известно, одновалентен, кислород в большинстве случаев двухвалентен (в оксониевых солях он может иметь, как мы увидим на стр. 151 другую валентность), азот — трех- и пятивалентен (или же координационно четырехвалентен) и т. п. В органической химии особо важную роль играет валентность углерода, который почти всегда бывает четырехвалентным, как видно, например, из существования простейших углеродных соединений СНь СС ь СОо, СЗг и т. п. Не четы-рехвалеитным углерод является лишь в очень немногих соединениях, обладаюиа,их специфическим строением, чрезвычайно ненасыщенным характером и часто неустойчивостью. С ними мы встретимся позднее в других главах этой книги. Исключением является окись углерода СО, известная уже из неорганической химии. [c.14]

    Со многими металлами церий образует сплавы определенного состава, например СеАЦ, eM.g и др. Нагретый металлический церий восстанавливает окись углерода до углерода. [c.278]

    Упругость пара дикобальтоктакарбонила при 15° составляет 0,07 мм рг. ст., плавл = 51°. Несколько выше этой температуры дикобальтоктакарбонил начинает разлагаться. Криоскопическое определение его молекулярного веса указывает на удвоенную формулу. Выше 51° дикобальтоктакарбонил разлагается на окись углерода и тетракобальтдодекакарбонпл [Со(СО)з]4. [c.331]

    Определение кислорода. Как указывалось выше, кислород обычно определяют по остатку . Однако предложены методы и прямого его определения. По методу, разработанному М. О. Коршун, навеску вещества прокаливают в кварцевой Тгрубке в токе азота. Продукты распада пропускают над сильно накаленным углем, при этом весь кислород превращается в окись углерода. Последняя количественно определяется при помощи пятиокиси иода. Определение основано на восстановлении пятиокиси иода, нагретой до 150 °С, окисью углерода по уравнению  [c.30]

    Основными компонентами продуктов сгорания углеводородных газов, подлежащими контролю, являются окись углерода и окислы азота. Содержание окиси углерода является критерием оценки качества работы бытовых газовых аппаратов, ГОСТ 10798—70 устанавливает ПДК окиси углерода в продуктах сгорания бытовых газовых приборов и метод его определения. Однако указанный метод не отвечает современным требованиям, В частности рекомендованный в ГОСТе газоанализатор ПОУ для определения окиси углерода метрологически не аттестован. Целью проведения работы явился выбор наиболее прогрессивного, скоростного метода определения окиси углерода, отвечающего заданным требованиям точности и воспроизводимости. Существующие методы определения СО в воздухе и в более сложных смесях, к которым относятся продукты сгорания углеводородных газов, можно подразделить на  [c.24]

    Газы, которые состоят из атомов одного и того же рода, характеризуются тем, что атомы не обладают заряда.ми свободного электричества. Такие газы, как водород, кислород и азот, не излучают тепловой энергии и совершенно прозрачны для тепловых лучей, излучаемых каким-нибудь посторонни телом. Для технических расчетов большое значение имеет тепловое излучение углекислого газа и водяных паров, так как оба эти газа являются хорошими излучателями и присутствуют в больших количествах в газообразных продуктах горения. Окись углерода сернистый ангидрид и метан также хорошо излучают тепловую энергию, но присутствуют обычно в небольших концентрациях. На рис. 13-1 6 и 13-17 показаны спектры поглощения углекислоты и водяното пара. Из этих рисунков видно, что газы ведут себя не так, как твердые и жидкие тела, поскольку они излучают и поглощают лучистую энергию лишь определенных узких областей спектра. Для водяного пара эти области лежат сравнительно близко друг к другу. Излучение происходит главным образом в области с длиной волн более 1 мк, поэтому оно невидимо для глаза. Из ри-468 [c.468]

    С течением времени такая система записи валового химического состава вещества, будучи формально вполпе корректной, привела к определенной терминологической путанице. Действительно, при чтении валовой формулы вещества содержание всех элементов читается как сумма окислов окись кальция, окись углерода, окись кремния и никогда СаО, Oj или SiO не читаются [c.8]


Смотреть страницы где упоминается термин Окйсь углерода определение: [c.90]    [c.407]    [c.88]    [c.532]    [c.179]    [c.13]    [c.50]    [c.68]    [c.80]    [c.365]   
Технический анализ Издание 2 (1958) -- [ c.89 , c.101 , c.107 ]




ПОИСК





Смотрите так же термины и статьи:

Азот, определение примеси окиси углерода

Анализ соды Определение содержания окиси натрия и двуокиси углерода

Газы и некоторые аэрозоли Определение окиси углерода

Иода пятиокись определение окиси углерода

Карбоксигемоглобин, определение окиси углерода

Контактный газ окиси углерода определение

Методические указания на хроматографическое определение окиси углерода с предварительной конверсией

Методы аналитического определения окиси- углерода

Методы обнаружения и определения окиси углерода

Молибденовая синь определение окиси углерода

О п ы т 2. Определение углерода и водорода сожжением вещества с окисью меди

Окисление окиси углерода фосфорномолибденовой кислотой (определение палладия и платины)

Окись углерода количественное определение

Окись углерода определение автоматическое

Окись углерода определение газометрическое

Окись углерода, определение в газа

Окись этилена углерода, определение

Определение двуокиси углерода, кислорода и окиси углерода в сыром и конвертированном газе

Определение окиси и двуокиси углерода в этилене

Определение окиси и двуокиси углерода на электрокондуктометрической установке типа ЭКУ

Определение окиси углерода (оксвда углерода) с использованием прибора Определение окиси углерода (оксвда углерода) и метана методом реакционной газовой хроматографии

Определение окиси углерода (оксида углерода) с использованием прибора Определение окиси углерода (оксвда углерода) с помощью приборов ГХ

Определение окиси углерода в атмосферном воздухе методом реакционной газовой хроматографии

Определение окиси углерода в воздухе производственных помещений методом фотоэлектроколориметрии

Определение окиси углерода в воздухе производственных помещений экспресс-методом

Определение окиси углерода с применением диметил-и-фенилендиамина

Определение равновесной степени конверсии и состава конвертированного газа при конверсии окиси углерода

Определение содержания двуокиси углерода, кислорода и окиси углерода в газе

Определение суммарного содержания водорода и окиси углерода

Опыт 2. Определение углерода и водорода сожжением вещества с окисью меди

Прибор для определения окиси углерода

Прибор для определения окиси углерода в воздухе промышленных предприятий типа ПОУ

Приборы для определения окиси углерода, паров бензина и сероводорода в воздушной среде

Примесей определение окиси углерода

Ртути окись, определение окиси углерода

Углерод количественное определение окись, определение в медицинское

Углерода окись, определение

Углерода окись, определение в азоте

Углерода окись, определение в воздухе

Фотоколориметрический метод определения окиси углерода



© 2025 chem21.info Реклама на сайте