Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окись углерода, определение в газа

    Окись углерода—бесцветный газ, без вкуса и практически без запаха, что особенно затрудняет его органолептическое определение. Окись углерода является сильным ядом кумулятивного действия, т. е. обладает способностью постепенно накапливаться в организме. При взаимодействии СО с гемоглобином крови образуется карбоксигемоглобин—стабильное соединение, не поглощающее кислород воздуха и тем самым мешающее крови быть переносчиком 63. Результат длительного воздействия окиси углерода в малых концентрациях (хроническое отравление) проявляется у человека через 2—3 месяца. При этом наблюдаются головные боли, головокружение, потеря зрения и чувствительности кожи. [c.172]


    Применяя описанную установку, мы можем, следовательно, разделить газ на две части. Первая часть — это углеводороды, более тяжелые, чем метан, с примесью закиси азота. Эти углеводороды могут замеряться суммарно или в дальнейшем может производиться их разгонка с определением индивидуальных углеводородов. Вторая часть — это газы, не конденсирующиеся и откачивающиеся при температуре жидкого воздуха, куда входят метан, азот, редкие газы, водород, кислород, окись углерода. Эти газы после откачки анализируют на приборе для общего анализа, где и определяют содержание указанных компонентов. [c.148]

    Измерение объема или давления. Первый вариант атого метода принадлежит Янаку . Вследствие своей простоты и доступности метод Янака получил широкое распространение. Применяют его в том случае, когда газом-носителем является двуокись углерода. Принцип метода заключается Б том, что газ-носитель, проходя через 45—48%-ный раствор едкого кали, полностью поглощается и в газо-сборник поступает лишь соответствующая нерастворимая фракция. Метод можно использовать для определения постоянных газов (воздух, окись углерода, инертные газы) или низших углеводородов (метан, этан, углеводороды до включительно). [c.91]

    Коршун и Гельман [21] разработали метод прямого определения кислорода в органических веществах. Навеску материала подвергают пиролизу в атмосфере чистого азота при 1150° С. Продукты разложения пропускают через слой чистой сажи при этом кислород взаимодействует с углеродом, образуя окись углерода. Смесь газов пропускают сквозь слой йодноватого ангидрида. Происходит следующая реакция  [c.35]

    По технике проведения измерений импульсные методы аналогичны описанному выше динамическому методу определения общей поверхности катализаторов. В качестве газа-адсорбата используют преимущественно кислород и окись углерода. [c.89]

    Недостаток кислорода прп горении легко установить анализом продуктов сгорания. При малом избытке воздуха, недостаточном для полного сгорания топлива, в дымовых газах обнаруживается окись углерода или несгоревшие частички углерода топлива (черный дым). Контроль избытка воздуха осуществляется путем определения содержания углекислого газа в продуктах сгорания. Коэффициент избытка воздуха определяется сравнением содержания СОг в дымовых газах при теоретическом количестве воздуха с действительным содержанием СОг (процентное содержание СОг в дымовых газах обратно пропорционально коэффициенту избытка воздуха), предполагая, что количеством образовавшейся СО можнО пренебречь. [c.53]


    Еще несколько лет тому назад определение кислорода осуществляли лишь по разности, т. е. по содержанию влаги, углерода, водорода, серы, хлора, азота, а также по зольности. В настоящее время наиболее распространенный метод заключается в термической обработке угля в токе азота и в пропускании выделяющихся продуктов через платинированный углерод при 910 10° С, что превращает весь кислород угля в окись углерода. Образующаяся сероокись углерода ( OS) разрушается при прохождении через нагретую медь при 910° С [42]. Образующаяся же окись углерода затем окисляется в углекислый газ, и его определяют различными методами. [c.51]

    В Голландии этот метод определения кислорода является стандартным. Окись углерода превращают в углекислый газ при прохождении через окись ртути, СОа затем анализируют при пропускании через раствор титрованного барита. [c.51]

    Химические реакции, осуществляемые в процессе создания контролируемых атмосфер из СНГ в смеси с воздухом, весьма разнообразны. Они обязательно сводятся к удалению кислорода. Помимо остаточного кислорода и азота защитные атмосферы в различном соотношении содержат двуокись и окись углерода, водород, пары воды и углеводороды. Дальнейшее изменение состава газовой среды требует специальных реакций. Поскольку двуокись углерода может взаимодействовать с определенными металлами и углеродом, содержащимся в стали, ее содержание в этой атмосфере необходимо снижать или полностью исключать. Для обеспечения взаимодействия между углеродом и поверхностью сплава металла (карбюризация) дополнительно может быть конвертирован пропан, а для нитрирования (азотирования) поверхности стали — введен аммиак. При термообработке стали нежелательно иметь высокую точку росы избыточной влаги, поэтому перед подачей на термообработку газы следует предварительно осушать, а окись углерода удалять во избежание поверхностного науглероживания низкоуглеродистых марок стали. [c.318]

    РеО (т) 4- СО (г) = Ре (т) + СО, (г), лежащую в основе процесса получения железа из руды. При ее протекании в доменных печах окись углерода не полностью превращается в углекислый газ, и в атмосфере печи отношение концентраций обоих газов не может превзойти определенную величину, соответствующую конечному состоянию равновесия при данной температуре. При выдержке газовой смеси такого состава над РеО сколь угодно долгое время не будет происходить дальнейшего образования железа. [c.28]

    Метод БЭТ не пригоден для раздельного определения площадей поверхностей катализаторов на носителях. В этом случае предпочтительнее применение методов, основанных на использовании высокотемпературной хемо-сорбции (0°С и выще) таких газов, как водород, окись углерода, кислород. Для определения количества адсорбированного вещества используются объемные адсорбционные или хроматографические методы. [c.177]

    Смесь газов содержит окись углерода, кислород и азот. Для определения количественного содержания СО в смеси 70 мл ее сожгли в избытке кислорода и полученную смесь газов пропустили через известковую воду. Выделившийся осадок отфильтровали и прокалили при 1000 0 [c.446]

    Абсорбционным методом определяют двуокись углерода или сумму кислых газов, непредельные углеводородные газы или их сумму, кислород и окись углерода. При выполнении абсорбционного метода совершенно необходимо придерживаться определенной последовательности в операциях, так как одни и те же компоненты могут поглощаться в разных растворах. [c.28]

    Перед определением водорода и предельных углеводородных газов необходимо удалить из анализируемой газовой смеси двуокись углерода, непредельные углеводородные газы, кислород и окись углерода. [c.32]

    Калибрование прибора и анализ газовых смесей. При определении малых концентраций горючих газов (водород, углеводороды и окись углерода) чаще применяют метод анализа по теплоте сгорания, чем по теплопроводности. [c.57]

    Ввиду способности вступать в химические соединения с гемоглобином крови окись углерода обладает высокой токсичностью. Предельно допустимая концентрация СО в воздухе составляет 0,0024% об., или 0,03 мг/л. Пребывание в помещении, содержащем 0,4% об. СО, в течение 5— 6 мин опасно для жизни человека. Такая высокая токсичность окиси углерода вызывает повышенные требования к эксплуатации установок, в которых осуществляется сжигание газов, содержащих СО. Контроль эа отсутствием утечек из газопроводов и газовых приборов, наличие аппаратуры для определения содержания со в воздухе производственных помещений, а также строгое соблюдение правил техники безопасности — таковы средства борьбы с отравлениями окисью углерода. [c.9]

    Вместе с тем, возможно и неполное сгорание, когда к атому углерода присоединяется не два, а только один атом кислорода и образуется окись углерода СО, называемая также угарным газом. Окись углерода в определенных условиях может в свою очередь сгорать с образованием двуокиси угле рода СО2 и выделением тепла. Естественно, что при сгорании углерода с образованием окиси углерода, обладающей еще значительным запасом тепла, выделяющимся нри ее сгорании в двуокись, используется лишь часть теплотворной способности углерода. [c.108]


    Медные стружки, смоченные аммиачным раствором хлористого аммония, применяются д.пя количественного определения кислорода ири высокой концентрации его в газе. Поглощение кислорода идет очень быстро и полно. Реактив не может быть применен для определения кислорода в газе, содержащем окись углерода и ацетилен. [c.69]

    Для раздельного определения поверхности и дисперсности нанесенных металлов используются, в основном, водород и окись углерода, реже — кислород [1]. Все эти газы при определенных условиях избирательно хемосорбируются на металле. В связи с методическим удобством измерения хемосорбции кислорода на хроматографических установках мы подробно исследовали возможность его применения для оценки дисперсности металлов восьмой группы [2—9]. [c.131]

    Общий газовый анализ заключается в определении наиболее известных газообразных элементов и соединений, причем те из них, которые характеризуются схожестью своих химических свойств, определяют суммарно. При этом виде анализа кислотные газы (СОд и НзЗ) поглощают щелочью и определяют их в сумме. Отдельно определяют кислород, водород и окись углерода, последние два газа — обычно путем сожжения. Определяют с помощью сожжения также суммарное содержание углеводородов, а с помощью поглощения — ненасыщенные углеводороды. Кроме того, по разности определяют азот вместе с редкими газами. [c.4]

    Существуют многочисленные приборы для общего газового анализа. Некоторые из них позволяют определить все упомянутые выше компоненты, именно СО , 0 , СО, N3, СН4, СзНе, СзН . Другие же приборы устроены таким образом, что позволяют определять только некоторые компоненты. Эти приборы не имеют приспособлений для сожжения и служат для определения таких газов, как кислород, углекислота и окись углерода методом поглощения. Наконец, есть приборы, в которых определяется только один какой-либо компонент, например углекислота или окись углерода. Имеются также приборы, в которых определяют только горючие газы, содержащиеся, например, в воздухе, путем сожжения и поглощения образовавшихся продуктов сожжения. [c.73]

    Определение индивидуальных газообразных углеводородов с помощью методов общего анализа представляет очень трудную, а в большинстве случаев невыполнимую задачу. Эта задача может быть удовлетворительно разрешена лишь при наличии в газе только одного или двух наиболее легких газообразных углеводородов (метан и этан метан и этен или ацетилен и т. п.). Присутствие углеводородов, более тяжелых, чем этан и этен, уже заметно искажает результаты анализа. Определение индивидуальных углеводородов при значительном их числе производится специальными методами, описываемыми в главах IV и VI. В этих случаях при общем анализе более или менее точно может быть определено путем сожжения только суммарное содержание углеводородов. Однако при одновременном присутствии Н2, СО и непредельных снижается и точность суммарного определения углеводородов путем сожжения. Водород и окись углерода могут определяться с помощью окиси меди при 300° однако при этом окисляется ацетилен, а частично и другие непредельные углеводороды. [c.130]

    После удаления кислорода производится сожжение метана и определение по разности азота. Если в газе присутствуют водород и окись углерода, то можно провести их сожжение в трубке с окисью меди 18 при 300°. [c.147]

    НгЗ, МОЖНО легко удалить путем поглощения едким кали кислород — при помощи пирогаллола или гидросернистого натрия а углеводороды, водород и окись углерода — путем сожжения. Удобнее всего эту очистку производить, анализируя газ. При определении редких газов состав остальной части представляет такл<е интерес, а потому общий анализ газа все равно приходится делать. Поэтому для экономии времени и испытуемого газа определение редких газов лучше всего производить в остатке после общего анализа, состоящем из азота и редких газов. [c.263]

    Можно вычислить процентное содержание углерода и водорода в неизвестном соединении, используя стехиометрические законы общей химии. Если содержание этих веществ в сумме равно прлблизительно 100%, значит < в данной молекуле никаких других элементов нет. Если эта сумма меньше 100%, и качественный анализ показывает отсутствие таких элементов, как азот, сора и галогены, значит в соединении, вероятно, присутствует кислород. В этом случае часто принимают процентное содержание кислорода за разность между 100% и суммой процентного содержания углерода и водорода. Более совернгенный способ состоит в непосредственном определении содержания кислорода путем разложения веществ в атмосфере азота, не содержащего кислорода. Вещество пропускают через углерод при 1120°, п кислород количественно превращается в окись углерода. Этот газ пропускают через пятиокнсь иода и освобождающийся иод титруют тиосульфатом. [c.18]

    Жидкий поглотитель водорода. В качестве жидкого поглотителя водорода может быть применен коллоидный раствор палладия. Для получения такого раствора к 2 г палладия и 5 г пикриновой кислоты приливают 22 мл 1 н. раствора едкого натра. Получ>.нный раствор разбавляют водой до 100—110 мл. Такое количество раствора может поглотить 4 л водорода. Определению мешают двуокись углерода, ненасыщенные углеводороды, кислород и окись углерода. Эти газы должны быть удалены из анализируемой газовой смеси до поглощения водорода. Присутствие насыщенных углеводородов определению не мешает. [c.65]

    Кислород в органических соединениях обычно определяют по разности, поэтому полученные значения включают сумму ошибок определения остальных элементов. В последние годы прямой метод определения, разработанный Шутце и усовершенствованный Унтерзаухером, находит все большее применение. Однако для большинства анализов полимеров, где нужно определять только небольшие количества кислорода, затраты времени на создание и проверку специальной аппаратуры делают этот метод непригодным. Органические соединения подвергают пиролизу в атмосфере азота при этом образуются углеводороды, окись углерода и вода, которые затем пропускают через графитовую колонку, нагретую до 1150°. Двуокись углерода количественно превращается в окись углерода. Выходящие газы пропускают над гранулированным КОН для удаления паров кислотных веществ, которые могут образоваться, если в исследуемом материале присутствуют азот, сера или галогены. Затем газы пропускают через подогретую пятиокись иода, с которой реагирует окись углерода. При этом образуются двуокись углерода и иод. Иод возгоняется и поглощается в трубке с поташом, из которой его вымывают и титруют стандартным раствором тиосульфата. Подробности метода описаны Стейермарком [144, стр. 208]. [c.63]

    Помимо упомянутых компонентов, сухие газы каталитического крекинга содернсат большое количество (до 25% объемн.) неуглеводородных соединений (азот, углекислота, окись углерода, пары воды). Их не включают в материальный баланс процесса крекинга, но учитывают при расчете соответствующих аппаратов и определении мощности газовых компрессоров. Неуглеводородные компоненты, поступая в реактор вместе с циркулирующим катализатором, присоединяются к потоку продуктов реакции. [c.16]

    Реактив для определения окиси углерода работает одинаково хо-])ошо прн всех температурах, но при указанной концентрации годится для связывания не больше О см окиси углерода. Соединение окиси углерода с пол тслористой медью очень непрочно при эва-ку1грованип, даже при встряхивании с индифферентными газами, час1ъ СО выделяется обратно. Поэтому удобнее пользоваться двумя пипетками, из которых первая служит для предварительного поглощения. вторая для окончательного. Далее надо заметить, что аммиачный раствор полухлористой меди поглощает ацетиленовые углеводороды и отчасти даже этилен, не говоря уже о кислороде. Поэтому, прежде чем определять окись углерода, необходимо элиминировать из газовой смеси эти компоненты. [c.384]

    Основными компонентами продуктов сгорания углеводородных газов, подлежащими контролю, являются окись углерода и окислы азота. Содержание окиси углерода является критерием оценки качества работы бытовых газовых аппаратов, ГОСТ 10798—70 устанавливает ПДК окиси углерода в продуктах сгорания бытовых газовых приборов и метод его определения. Однако указанный метод не отвечает современным требованиям, В частности рекомендованный в ГОСТе газоанализатор ПОУ для определения окиси углерода метрологически не аттестован. Целью проведения работы явился выбор наиболее прогрессивного, скоростного метода определения окиси углерода, отвечающего заданным требованиям точности и воспроизводимости. Существующие методы определения СО в воздухе и в более сложных смесях, к которым относятся продукты сгорания углеводородных газов, можно подразделить на  [c.24]

    Газы, которые состоят из атомов одного и того же рода, характеризуются тем, что атомы не обладают заряда.ми свободного электричества. Такие газы, как водород, кислород и азот, не излучают тепловой энергии и совершенно прозрачны для тепловых лучей, излучаемых каким-нибудь посторонни телом. Для технических расчетов большое значение имеет тепловое излучение углекислого газа и водяных паров, так как оба эти газа являются хорошими излучателями и присутствуют в больших количествах в газообразных продуктах горения. Окись углерода сернистый ангидрид и метан также хорошо излучают тепловую энергию, но присутствуют обычно в небольших концентрациях. На рис. 13-1 6 и 13-17 показаны спектры поглощения углекислоты и водяното пара. Из этих рисунков видно, что газы ведут себя не так, как твердые и жидкие тела, поскольку они излучают и поглощают лучистую энергию лишь определенных узких областей спектра. Для водяного пара эти области лежат сравнительно близко друг к другу. Излучение происходит главным образом в области с длиной волн более 1 мк, поэтому оно невидимо для глаза. Из ри-468 [c.468]

    Предложено определение кислорода в металлическом бериллии методом плавления в токе инертного газа [816]. Образовавшаяся в результате взаимодействия графита (из тигля) и кислорода при 2700°С окись углерода удаляется током аргона (0,5 л]мин), окисляется до двуокиси углерода, поглощается раствором Ва(0Н)2- Определение заканчивается кондуктометри-ческим методом. Для уменьшения улетучивания бериллия вводят никель. Интервал определяемых концентраций 0,01 — 1 70- [c.200]

    Точность определения в значительной мере зависит от точности титрования. При анализе газа, содержащего менее 1% метана, следует применять растворы 0,025 нормальности и бюретки емкостью 25 мл с делениями на 0,1 мл. Титр соляной кислоты необходимо периодически проверять также следует проверять и соотношение раство])ов едкого барита и соляной кислоты. Кислород, применяемый для сжигания, проверяют па окись углерода и при наличии последней вводят соответствующую поправку. При проведении сжигания одевают предохраиительные очки илп закрывают прибор экраполг из плексигласа. [c.94]

    Соединение прибора для разгонки с прибором для общего анализа позволяет полно и точно проводить всякий анализ газа. Это особенно важно при анализе природных газов, когда мы имеем дело с неизвестными до сих пор выходами газа или с газами из новых, вскрытых бурением пластов. Состав газа в этих случаях совершенно неизвестен, поэтому всегда желательно провести наиболее полное его исследование. Откачанный газ после удаления кислорода направляют в трубку для сожжения с окисью меди, где сжигаются водород и окись углерода при 300°. Кислород можно определить в газе и до конденсации, хотя это и не обязательно. Можно кислород определить и удалить после откачки. Однако это удаление кислорода необходимо провести до сожжения с окисью меди. Остаток после сожжения метана и определения углекислого газа состоит из азота и редких газов. При необходимости определения редких газов остаток надлежит направить в пипетку с ртутью, для того чтобы в дальнейшем провести на этом же разгоночном приборе также и определение гелия. [c.147]

    В недостаточно совершенных топочных устройствах или при нена-лаженном режиме работы топки вследствие местного недостатка воздуха или неблагоприятных тепловых и аэродинамических условий часть горючих топлива не окисляется до конечных продуктов, а образуются продукты неполного сгорания СО, Нг, СН4 и др. Наиболее вероятным продуктом неполного горения является окись углерода, образующаяся одновременно с СО2 и менее активно реагирующая с кислородом по сравнению с водородсодержащими газами. Содержание СО в продуктах сгорания обычно выражй ется долями процента, что находится в пределах точности газового анализа, применяемого в эксплуатационных условиях, хотя дает значительный недожог топлива. Поэтому для определения содержания СО с достаточной точностью производится лабораторный анализ с помощью хромографического газоанализатора. В этих целях может быть использован также расчетный метод. В последнем случае в основу расчета принимается уравнение неполного горения. [c.38]

    Величина поглощения газа даже при самых благоприятных условиях существенно меняется в зависимости от химической природы окисла и температуры и обычно включает активированную адсорбцию. Например, окись меди (И) [120] и окись кобальта (И) [121] легко адсорбируют сверхмонослойиое количество кислорода при комнатной температуре, в то время как окись никеля в подобных условиях хемосорбирует обычно только 10—20% монослоя, что связано, по-видимому, с трудностью удаления с поверхности окиси никеля предварительно адсорбированного кислорода. Степень покрытия поверхности разных окислов га-типа водородо.м или окисью углерода также существенно различается. В целом хемосорбция таких газов, как кислород, водород или окись углерода, открывает довольно широкие возможности определения удельной поверхности окислов. В то же время индивидуальные свойства окислов настолько различны, что, прежде чем переходить к количественным измерениям, необходимо иметь детальные данные по хемосорбцион-ным свойства.м отдельных компонентов, [c.332]

    В данном разделе рассматривается определение таких свойств, которые могут зависеть от природы взаимодействия адсорбат—адсорбент и которые могут дать сведения о природе атома металла, связанного с частицами адсорбата. Это особенно важно для дисперсных биметаллических катализаторов, оба компонента которых количественно существенно не отличаются по своим хемосорбционным свойствам. Например, вряд ли можно с помощью простых измерений поглощения газа (как это описано выше для системы переходный металл—металл 1 Б группы) исследовать катализатор, содержащий 2 металла VIII группы, которые прочно хемосорбируют водород или окись углерода. [c.442]

    ОКИСИ алюминия) железный катализатор с окисью углерода при различных давлениях и измеряли полную адсорбцию (включающую хемосорбцию и физический слой, расположенный выше). В каждом случае при иагревании до 0° физический слой удалялся и оставался только хемосорбированный слой, так что при повторном охлаждении до —183° и адсорбции количество поглощенного газа служило мерой физической адсорбции. Разность между полной и физической адсорбцией (см. рис. 67, две нижние кривые) давала величину хемосорбции. Таким образохм, здесь производилось два определения —объема газа, необходимого для заполнения монослоя (см. стр. 169— 170), давшее совпадающие результаты и позволившее сделать предположение, что все поверхностные атомы железа хемосорбируют окись углерода. Однако в случае одно- или дважды промотированного катализатора площадь хемосорбиро-вавшей поверхности (железо) была меньше полной поверхности, хотя обе они и превышали поверхность непромо-тированного катализатора (табл. 33). Около 60% поверхности приходилось на долю промоторов и только около [c.299]


Смотреть страницы где упоминается термин Окись углерода, определение в газа: [c.248]    [c.248]    [c.88]    [c.68]    [c.127]    [c.127]    [c.228]    [c.171]   
Химико-технический контроль лесохимических производств (1956) -- [ c.147 ]




ПОИСК





Смотрите так же термины и статьи:

Окйсь углерода определение



© 2025 chem21.info Реклама на сайте